首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7859篇
  免费   703篇
  国内免费   4篇
  2023年   55篇
  2022年   98篇
  2021年   288篇
  2020年   149篇
  2019年   181篇
  2018年   202篇
  2017年   163篇
  2016年   341篇
  2015年   524篇
  2014年   533篇
  2013年   547篇
  2012年   776篇
  2011年   663篇
  2010年   384篇
  2009年   374篇
  2008年   504篇
  2007年   428篇
  2006年   385篇
  2005年   303篇
  2004年   302篇
  2003年   275篇
  2002年   253篇
  2001年   68篇
  2000年   44篇
  1999年   44篇
  1998年   63篇
  1997年   35篇
  1996年   27篇
  1995年   29篇
  1994年   26篇
  1993年   30篇
  1992年   31篇
  1991年   22篇
  1990年   19篇
  1989年   28篇
  1988年   16篇
  1987年   15篇
  1986年   17篇
  1985年   18篇
  1984年   19篇
  1983年   29篇
  1982年   16篇
  1981年   22篇
  1980年   15篇
  1979年   15篇
  1978年   20篇
  1977年   17篇
  1976年   11篇
  1975年   11篇
  1969年   11篇
排序方式: 共有8566条查询结果,搜索用时 31 毫秒
991.
Schwanniomyces occidentalis β-fructofuranosidase (Ffase) is a GH32 dimeric enzyme that releases fructose from the nonreducing end of various oligosaccharides and essential storage fructans such as inulin. It also catalyzes the transfer of a fructosyl unit to an acceptor producing 6-kestose and 1-kestose, prebiotics that stimulate the growth of bacteria beneficial for human health. We report here the crystal structure of inactivated Ffase complexed with fructosylnystose and inulin, which shows the intricate net of interactions keeping the substrate tightly bound at the active site. Up to five subsites were observed, the sugar unit located at subsite +3 being recognized by interaction with the β-sandwich domain of the adjacent subunit within the dimer. This explains the high activity observed against long substrates, giving the first experimental evidence of the direct role of a GH32 β-sandwich domain in substrate binding. Crucial residues were mutated and their hydrolase/transferase (H/T) activities were fully characterized, showing the involvement of the Gln-228/Asn-254 pair in modulating the H/T ratio and the type β(2-1)/β(2-6) linkage formation. We generated Ffase mutants with new transferase activity; among them, Q228V gives almost specifically 6-kestose, whereas N254T produces a broader spectrum product including also neokestose. A model for the mechanism of the Ffase transfructosylation reaction is proposed. The results contribute to an understanding of the molecular basis regulating specificity among GH-J clan members, which represent an interesting target for rational design of enzymes, showing redesigned activities to produce tailor-made fructooligosaccharides.  相似文献   
992.
In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.  相似文献   
993.
994.
Understanding the paleoecology of extinct subfossil lemurs requires reconstruction of dietary preferences. Tooth morphology is strongly correlated with diet in living primates and is appropriate for inferring dietary ecology. Recently, dental topographic analysis has shown great promise in reconstructing diet from molar tooth form. Compared with traditionally used shearing metrics, dental topography is better suited for the extraordinary diversity of tooth form among subfossil lemurs and has been shown to be less sensitive to phylogenetic sources of shape variation. Specifically, we computed orientation patch counts rotated (OPCR) and Dirichlet normal energy (DNE) of molar teeth belonging to 14 species of subfossil lemurs and compared these values to those of an extant lemur sample. The two metrics succeeded in separating species in a manner that provides insights into both food processing and diet. We used them to examine the changes in lemur community ecology in Southern and Southwestern Madagascar that accompanied the extinction of giant lemurs. We show that the poverty of Madagascar's frugivore community is a long-standing phenomenon and that extinction of large-bodied lemurs in the South and Southwest resulted not merely in a loss of guild elements but also, most likely, in changes in the ecology of extant lemurs.  相似文献   
995.
Graft-versus-host disease (GVHD) is a severe and frequent complication of allogeneic bone marrow transplantation (BMT) that involves the gastrointestinal (GI) tract and lungs. The pathobiology of GVHD is complex and involves immune cell recognition of host Ags as foreign. We hypothesize a central role for the collectin surfactant protein A (SP-A) in regulating the development of GVHD after allogeneic BMT. C57BL/6 (H2b; WT) and SP-A-deficient mice on a C57BL/6 background (H2b; SP-A(-/-)) mice underwent allogeneic or syngeneic BMT with cells from either C3HeB/FeJ (H2k; SP-A-deficient recipient mice that have undergone an allogeneic BMT [SP-A(-/-)alloBMT] or SP-A-sufficient recipient mice that have undergone an allogeneic BMT) or C57BL/6 (H2b; SP-A-deficient recipient mice that have undergone a syngeneic BMT or SP-A-sufficient recipient mice that have undergone a syngeneic BMT) mice. Five weeks post-BMT, mice were necropsied, and lung and GI tissue were analyzed. SP-A(-/-) alloBMT or SP-A-sufficient recipient mice that have undergone an allogeneic BMT had no significant differences in lung pathology; however, SP-A(-/-)alloBMT mice developed marked features of GI GVHD, including decreased body weight, increased tissue inflammation, and lymphocytic infiltration. SP-A(-/-)alloBMT mice also had increased colon expression of IL-1β, IL-6, TNF-α, and IFN-γ and as well as increased Th17 cells and diminished regulatory T cells. Our results demonstrate the first evidence, to our knowledge, of a critical role for SP-A in modulating GI GVHD. In these studies, we demonstrate that mice deficient in SP-A that have undergone an allogeneic BMT have a greater incidence of GI GVHD that is associated with increased Th17 cells and decreased regulatory T cells. The results of these studies demonstrate that SP-A protects against the development of GI GVHD and establishes a role for SP-A in regulating the immune response in the GI tract.  相似文献   
996.
Infection of the fat body of Lymantria dispar (Lep.: Lymantriinae) larvae with the microsporidium Vairimorpha disparis has severe effects on juvenile hormone (JH) metabolism of the host. Beginning 8 days postinfection, activity of the JH degrading enzyme JH-esterase was significantly lower in the hemolymph of infected than uninfected larvae. Activity remained low as microsporidiosis progressed. JH titers were slightly elevated in infected larvae; the difference was not significant in most cases. This disturbance of JH metabolism may be due to generally impaired fat body functions and high demand for resources by the developing pathogen.  相似文献   
997.
RhoBTB (BTB stands for broad-complex, tramtrack, bric à brac) proteins are tumor suppressors involved in the formation of cullin 3 (Cul3)-dependent ubiquitin ligase complexes. However, no substrates of RhoBTB-Cul3 ubiquitin ligase complexes have been identified. We identified MUF1 (LRRC41, leucine-rich repeat containing 41) as a potential interaction partner of RhoBTB3 in a two-hybrid screening on a mouse brain cDNA library. MUF1 is a largely uncharacterized protein containing a leucine-rich repeat and, interestingly, a BC-box that serves as a linker in multicomponent, cullin 5 (Cul5)-based ubiquitin ligases. We confirmed the interaction of MUF1 with all three mammalian RhoBTB proteins using immunoprecipitation. We characterized MUF1 in terms of expression profile and subcellular localization, the latter also with respect to RhoBTB proteins. We found out that MUF1 is a ubiquitously expressed nuclear protein that, upon coexpression with RhoBTB, partially retains in the cytoplasm, where both proteins colocalize. We also show that MUF1 is able to dimerize similarly to other leucine-rich repeat-containing proteins. To explore the significance of MUF1-RhoBTB interaction within Cul-ligase complexes and the mechanism of MUF1 degradation, we performed a protein stability assay and found that MUF1 is degraded in the proteasome in a Cul5-independent manner by RhoBTB3-Cul3 ubiquitin ligase complex. Finally, we explored a possible heterodimerization of Cul3 and Cul5 and indeed discovered that these two cullins are capable of forming heterodimers. Thus, we have identified MUF1 as the first substrate for RhoBTB-Cul3 ubiquitin ligase complexes. Identification of substrates of these complexes will result in better understanding of the tumor suppressor function of RhoBTB.  相似文献   
998.
Many extracellular factors sensitize nociceptors. Often they act simultaneously and/or sequentially on nociceptive neurons. We investigated if stimulation of the protein kinase C epsilon (PKCε) signaling pathway influences the signaling of a subsequent sensitizing stimulus. Central in activation of PKCs is their transient translocation to cellular membranes. We found in cultured nociceptive neurons that only a first stimulation of the PKCε signaling pathway resulted in PKCε translocation. We identified a novel inhibitory cascade to branch off upstream of PKCε, but downstream of Epac via IP3‐induced calcium release. This signaling branch actively inhibited subsequent translocation and even attenuated ongoing translocation. A second ‘sensitizing’ stimulus was rerouted from the sensitizing to the inhibitory branch of the signaling cascade. Central for the rerouting was cytoplasmic calcium increase and CaMKII activation. Accordingly, in behavioral experiments, activation of calcium stores switched sensitizing substances into desensitizing substances in a CaMKII‐dependent manner. This mechanism was also observed by in vivo C‐fiber electrophysiology corroborating the peripheral location of the switch. Thus, we conclude that the net effect of signaling in nociceptors is defined by the context of the individual cell's signaling history.  相似文献   
999.
1000.
PCNA is monoubiquitinated in response to DNA damage and fork stalling and then initiates recruitment of specialized polymerases in the DNA damage tolerance pathway, translesion synthesis (TLS). Since PCNA is reported to associate with Epstein-Barr virus (EBV) DNA during its replication, we investigated whether the EBV deubiquitinating (DUB) enzyme encoded by BPLF1 targets ubiquitinated PCNA and disrupts TLS. An N-terminal BPLF1 fragment (a BPLF1 construct containing the first 246 amino acids [BPLF1 1-246]) associated with PCNA and attenuated its ubiquitination in response to fork-stalling agents UV and hydroxyurea in cultured cells. Moreover, monoubiquitinated PCNA was deubiquitinated after incubation with purified BPLF1 1-246 in vitro. BPLF1 1-246 dysregulated TLS by reducing recruitment of the specialized repair polymerase polymerase η (Polη) to the detergent-resistant chromatin compartment and virtually abolished localization of Polη to nuclear repair foci, both hallmarks of TLS. Expression of BPLF1 1-246 decreased viability of UV-treated cells and led to cell death, presumably through deubiquitination of PCNA and the inability to repair damaged DNA. Importantly, deubiquitination of PCNA could be detected endogenously in EBV-infected cells in comparison with samples expressing short hairpin RNA (shRNA) against BPLF1. Further, the specificity of the interaction between BPLF1 and PCNA was dependent upon a PCNA-interacting peptide (PIP) domain within the N-terminal region of BPLF1. Both DUB activity and PIP sequence are conserved in the members of the family Herpesviridae. Thus, deubiquitination of PCNA, normally deubiquitinated by cellular USP1, by the viral DUB can disrupt repair of DNA damage by compromising recruitment of TLS polymerase to stalled replication forks. PCNA is the first cellular target identified for BPLF1 and its deubiquitinating activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号