全文获取类型
收费全文 | 7519篇 |
免费 | 656篇 |
国内免费 | 4篇 |
专业分类
8179篇 |
出版年
2023年 | 58篇 |
2022年 | 142篇 |
2021年 | 273篇 |
2020年 | 147篇 |
2019年 | 176篇 |
2018年 | 200篇 |
2017年 | 160篇 |
2016年 | 335篇 |
2015年 | 509篇 |
2014年 | 521篇 |
2013年 | 532篇 |
2012年 | 754篇 |
2011年 | 645篇 |
2010年 | 375篇 |
2009年 | 363篇 |
2008年 | 490篇 |
2007年 | 417篇 |
2006年 | 375篇 |
2005年 | 287篇 |
2004年 | 288篇 |
2003年 | 262篇 |
2002年 | 238篇 |
2001年 | 52篇 |
2000年 | 29篇 |
1999年 | 38篇 |
1998年 | 60篇 |
1997年 | 29篇 |
1996年 | 22篇 |
1995年 | 27篇 |
1994年 | 23篇 |
1993年 | 27篇 |
1992年 | 23篇 |
1991年 | 19篇 |
1990年 | 14篇 |
1989年 | 21篇 |
1988年 | 12篇 |
1987年 | 9篇 |
1986年 | 10篇 |
1985年 | 12篇 |
1984年 | 15篇 |
1983年 | 24篇 |
1982年 | 8篇 |
1981年 | 16篇 |
1980年 | 13篇 |
1979年 | 11篇 |
1978年 | 15篇 |
1977年 | 10篇 |
1976年 | 9篇 |
1975年 | 9篇 |
1974年 | 8篇 |
排序方式: 共有8179条查询结果,搜索用时 19 毫秒
91.
Chuang-Rung Chang Cara Marie Manlandro Damien Arnoult Julia Stadler Ammon E. Posey R. Blake Hill Craig Blackstone 《The Journal of biological chemistry》2010,285(42):32494-32503
Mitochondria dynamically fuse and divide within cells, and the proper balance of fusion and fission is necessary for normal mitochondrial function, morphology, and distribution. Drp1 is a dynamin-related GTPase required for mitochondrial fission in mammalian cells. It harbors four distinct domains: GTP-binding, middle, insert B, and GTPase effector. A lethal mutation (A395D) within the Drp1 middle domain was reported in a neonate with microcephaly, abnormal brain development, optic atrophy, and lactic acidemia (Waterham, H. R., Koster, J., van Roermund, C. W., Mooyer, P. A., Wanders, R. J., and Leonard, J. V. (2007) N. Engl. J. Med. 356, 1736–1741). Mitochondria within patient-derived fibroblasts were markedly elongated, but the molecular mechanisms underlying these findings were not demonstrated. Because the middle domain is particularly important for the self-assembly of some dynamin superfamily proteins, we tested the hypothesis that this A395D mutation, and two other middle domain mutations (G350D, G363D) were important for Drp1 tetramerization, higher order assembly, and function. Although tetramerization appeared largely intact, each of these mutations compromised higher order assembly and assembly-dependent stimulation of Drp1 GTPase activity. Moreover, mutant Drp1 proteins exhibited impaired localization to mitochondria, indicating that this higher order assembly is important for mitochondrial recruitment, retention, or both. Overexpression of these middle domain mutants markedly inhibited mitochondrial division in cells. Thus, the Drp1 A395D lethal defect likely resulted in impaired higher order assembly of Drp1 at mitochondria, leading to decreased fission, elongated mitochondria, and altered cellular distribution of mitochondria. 相似文献
92.
Robert A. B. Mason † Julia Cooke Angela T. Moles Michelle R. Leishman 《Global Ecology and Biogeography》2008,17(5):633-640
Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus‐, family‐ or habitat‐specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t‐tests to compare original and introduced range populations, two‐way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7‐fold (all species), 6.9‐fold (herbs only) and 26.1‐fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long‐distance seed dispersal may significantly contribute to the invasiveness of many exotic species. 相似文献
93.
David Schäfer Kie Hankins Michelle Allion Ulrike Krewer Franziska Karcher Laurin Derr Rolf Schuster Julia Maibach Stefan Mück Dominik Kramer Reiner Mönig Fabian Jeschull Sven Daboss Tom Philipp Gregor Neusser Jan Romer Krishnaveni Palanisamy Christine Kranz Florian Buchner R. Jürgen Behm Ali Ahmadian Christian Kübel Irshad Mohammad Ago Samoson Raiker Witter Bernd Smarsly Marcus Rohnke 《Liver Transplantation》2024,14(15):2302830
The anode/electrolyte interface behavior, and by extension, the overall cell performance of sodium-ion batteries is determined by a complex interaction of processes that occur at all components of the electrochemical cell across a wide range of size- and timescales. Single-scale studies may provide incomplete insights, as they cannot capture the full picture of this complex and intertwined behavior. Broad, multiscale studies are essential to elucidate these processes. Within this perspectives article, several analytical and theoretical techniques are introduced, and described how they can be combined to provide a more complete and comprehensive understanding of sodium-ion battery (SIB) performance throughout its lifetime, with a special focus on the interfaces of hard carbon anodes. These methods target various length- and time scales, ranging from micro to nano, from cell level to atomistic structures, and account for a broad spectrum of physical and (electro)chemical characteristics. Specifically, how mass spectrometric, microscopic, spectroscopic, electrochemical, thermodynamic, and physical methods can be employed to obtain the various types of information required to understand battery behavior will be explored. Ways are then discussed how these methods can be coupled together in order to elucidate the multiscale phenomena at the anode interface and develop a holistic understanding of their relationship to overall sodium-ion battery function. 相似文献
94.
95.
The side chain interaction index (SCII) is a method of calculating the propensity for short-range interactions among side chains within a peptide sequence. Here, it is shown that the SCII values of secondary structure elements that have been shown to fold early and independently cluster separately from those of structures that fold later and/or are dependent on long-range interactions. In addition, the SCII values of engineered peptides that spontaneously adopt a particular desired fold in solution are significantly different from those of engineered peptides that fail to exhibit a stable conformation. Thus, the SCII, as a measure of local structural stability, constitutes a useful tool in folding prediction and in protein/peptide engineering. A program that allows rapid calculation of SCII values is presented. 相似文献
96.
Yaneva JN Paneva EG Zacharieva SI Zlatanova JS 《Zeitschrift für Naturforschung. C, Journal of biosciences》2006,61(11-12):879-883
During our earlier investigations we have observed a prominent preference of the linker histone H1 for binding to a cis-platinated DNA (a synthetic fragment with global type of platination in respect to targets for cisplatin) comparing with unmodified and trans-Pt-modified DNA. In the present work we report our recent experimental results on the binding of the linker histones H1 and H5 to a cisplatin-modified synthetic DNA fragment containing a single nucleotide target d(GC/CG) for inter-platination. Surprisingly, no preferential binding of linker histones to cis-inter-platinated DNA was observed by means of the electromobility-shift assay. The same negative results were obtained with a part of the linker histone molecule suggested to be responsible for DNA-binding--its globular domain. Contrary, the data with another nuclear protein with similar DNA-binding properties as linker histones--HMGB1--showed a strong afinity for interaction with DNA containing interstrand cross-links. 相似文献
97.
98.
Camilla L. Nesb? Rajkumari Kumaraswamy Marlena Dlutek W. Ford Doolittle Julia Foght 《Applied and environmental microbiology》2010,76(14):4896-4900
All cultivated Thermotogales are thermophiles or hyperthermophiles. However, optimized 16S rRNA primers successfully amplified Thermotogales sequences from temperate hydrocarbon-impacted sites, mesothermic oil reservoirs, and enrichment cultures incubated at <46°C. We conclude that distinct Thermotogales lineages commonly inhabit low-temperature environments but may be underreported, likely due to “universal” 16S rRNA gene primer bias.Thermotogales, a bacterial group in which all cultivated members are anaerobic thermophiles or hyperthermophiles (5), are rarely detected in anoxic mesothermic environments, yet their presence in corresponding enrichment cultures, bioreactors, and fermentors has been observed using metagenomic methods and 16S rRNA gene amplification (6) (see Table S1 in the supplemental material). The most commonly detected lineage is informally designated here “mesotoga M1” (see Table S1 in the supplemental material). PCR experiments indicated that mesotoga M1 sequences amplified inconsistently using “universal” 16S rRNA gene primers, perhaps explaining their poor detection in DNA isolated from environmental samples (see text and Table S2 in the supplemental material). We therefore designed three 16S rRNA PCR primer sets (Table (Table1)1) targeting mesotoga M1 bacteria and their closest cultivated relative, Kosmotoga olearia. Primer set A was the most successful set, detecting a wider diversity of Thermotogales sequences than set B and being more Thermotogales-specific than primer set C (Table (Table22).
Open in a separate windowaHeterogeneity hot spots identified in reference 1.
Open in a separate windowaSee the supplemental material for site and methodological details. NA, not applicable; ND, not determined.bThe number of OTUs observed at a 0.01 distance cutoff is given for each primer set. The numbers of clones with Thermotogales sequences are in parentheses. —, PCR was attempted but no Thermotogales sequences were obtained or the PCR consistently failed.c+, sequence(s) detected; −, not detected. For more information on the enrichments, see the text and Table S3 in the supplemental material.dFrom April to May 2004, the temperature at the depth where the sample was taken was 12°C (7).eThere were no water samples from DWH and HSAT available for enrichment cultures, and no DNA was available from HWH.fThis reservoir has been treated with biocides; moreover, at this site, the water is filtered before being reinjected into the reservoir.gTemperatures of the oil pool where the water sample was obtained. The HSAT facility receives water from two oil pools, one at 41°C and one at 50°C.hWe screened DNA from samples taken in 2006 and 2008 but detected the same sequences in both, so sequences from the two samples were pooled.iThe mesotoga M1 and Kosmotoga sequences from DWH and DF were >99% similar and were assembled into one sequence in Fig. Fig.11.jThis reservoir has been injected with water from a neighboring oil reservoir.Since the putative mesophilic Thermotogales have been overwhelmingly associated with polluted and hydrocarbon-impacted environments and mesothermic oil reservoirs are the only natural environments where mesotoga M1 sequences previously were detected (see Table S1 in the supplemental material), we selected four oil reservoirs with in situ temperatures of 14°C to 53°C and two temperate, chronically hydrocarbon-impacted sites for analysis (Table (Table2).2). Total community DNA was extracted, the 16S rRNA genes were amplified, cloned, and sequenced as described in the supplemental material. 相似文献
TABLE 1.
Primers targeting mesotoga M1 bacteria constructed and used in this studyPrimer | Sequence (5′ to 3′) | Position in mesotoga 16S rRNA gene | No. of heterogeneity hot spotsa | Potential primer match in other Thermotogales lineages |
---|---|---|---|---|
Primer set A | 1 (helix 17) | |||
NMes16S.286F | CGGCCACAAGGAYACTGAGA | 286 | Perfect match in Kosmotoga olearia. The last 7 or 8 nucleotides at the 3′ end are conserved in other Thermotogales lineages. | |
NMes16S.786R | TGAACATCGTTTAGGGCCAG | 786 | One 5′ mismatch in Kosmotoga olearia and Petrotoga mobilis; 2-4 internal and 5′ mismatches in other lineages | |
Primer set B | None | |||
BaltD.42F | ATCACTGGGCGTAAAGGGAG | 540 | Perfect match in Kosmotoga olearia; one or two 3′ mismatches in most other Thermotogales lineages | |
BaltD.494R | GTGGTCGTTCCTCTTTCAAT | 992 | No match in other Thermotogaleslineages. The primer is located in heterogeneity hot spot helices 33 and 34. This primer also fails to amplify some mesotoga M1 sequences. | |
Primer set C | 9 (all 9 regions) | |||
TSSU-3F | TATGGAGGGTTTGATCCTGG | 3 | Perfect match in Thermotoga spp., Kosmotoga olearia, and Petrotoga mobilis; two or three 5′ mismatches in other Thermotogales lineages; one 5′ mismatch to mesotoga M1 16S rRNA genes | |
Mes16S.R | ACCAACTCGGGTGGCTTGAC | 1390 | One 5′ mismatch in Kosmotoga olearia; 1-3 internal or 5′ mismatches in other Thermotogales lineages |
TABLE 2.
Mesotoga clade sequences detected in environmental samples and enrichment cultures screened in this studyaSite (abbreviation) | Temp in situ(°C) | Waterflooded | Environmental samplesb | Enrichment cultures | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Primer set A | Primer set B | Primer set C | Thermotogalesdetected by primer setc: | Lineage(s) detected | ||||||||
No. of OTUs (no. of clones) | Lineage | No. of OTUs (no. of clones) | Lineage | No. of OTUs (no. of clones) | Lineage | A | B | C | ||||
Sidney Tar Ponds sediment (TAR) | Temperate | NA | 1 (5) | M1 | 1 | M1 | — | — | + | + | + | M1, M2, M5 |
Oil sands settling basin tailings (05mlsb) | ∼12d | NA | — | — | 1 (6) | M1 | — | — | − | + | − | M1 |
Grosmont A produced water (GrosA) | 20 | No | 1 (15) | M1 | 1 (22) | M1 | 2 (14) | M1 | + | + | + | M1 |
Foster Creek produced water (FC) | 14 | No | 1 (21) | M1 | 1 (23) | M1 | 1 (1) | M1 | + | ND | − | M1 |
Oil field D wellhead water (DWH)e,f | 52-53g | Yes | 1 (14) | Kosmotogai | 1 (6) | M1i | 1 (1) | Kosmotogai | NA | NA | NA | NA |
Oil field D FWKO water (DF)f,h | 20-30 | Yes | 1 (45) | Kosmotogai | 1 (17) | M1i | — | — | + | + | − | M1, Kosmotoga, Petrotoga |
Oil field H FWKO water (HF)j | 30-32 | Yes | 7 (59) | M1, M2, M3, M4, Kosmotoga | 1 (29) | M1 | — | — | + | + | − | M1, Petrotoga |
Oil field H satellite water (HSAT)e,j | 41 and 50g | Yes | 1 (8) | M1 | — | — | 2 (16) | Kosmotoga, Thermotoga | NA | NA | NA | NA |
Oil field H wellhead water (HWH)e,j | 41 and 50g | Yes | NA | — | — | NA | NA | NA | + | + | + | M1, Petrotoga |
99.
Julia E. Maxson Samuel B. Luty Jason D. MacManiman Melissa L. Abel Brian J. Druker Jeffrey W. Tyner 《The Journal of biological chemistry》2014,289(9):5820-5827
Mutations in the CSF3 granulocyte colony-stimulating factor receptor CSF3R have recently been found in a large percentage of patients with chronic neutrophilic leukemia and, more rarely, in other types of leukemia. These CSF3R mutations fall into two distinct categories: membrane-proximal mutations and truncation mutations. Although both classes of mutation have exhibited the capacity for cellular transformation, several aspects of this transformation, including the kinetics, the requirement for ligand, and the dysregulation of downstream signaling pathways, have all been shown to be discrepant between the mutation types, suggesting distinct mechanisms of activation. CSF3R truncation mutations induce overexpression and ligand hypersensitivity of the receptor, likely because of the removal of motifs necessary for endocytosis and degradation. In contrast, little is known about the mechanism of activation of membrane-proximal mutations, which are much more commonly observed in chronic neutrophilic leukemia. In contrast with CSF3R truncation mutations, membrane-proximal mutations do not exhibit overexpression and are capable of signaling in the absence of ligand. We show that the Thr-615 and Thr-618 sites of membrane-proximal mutations are part of an O-linked glycosylation cluster. Mutation at these sites prevents O-glycosylation of CSF3R and increases receptor dimerization. This increased dimerization explains the ligand-independent activation of CSF3R membrane-proximal mutations. Cytokine receptor activation through loss of O-glycosylation represents a novel avenue of aberrant signaling. Finally, the combination of the CSF3R membrane proximal and truncation mutations, as has been reported in some patients, leads to enhanced cellular transformation when compared with either mutation alone, underscoring their distinct mechanisms of action. 相似文献
100.
Sarah Borg Julia Hofmann Anna Pollithy Claus Lang Dirk Schüler 《Applied and environmental microbiology》2014,80(8):2609-2616
The alphaproteobacterium Magnetospirillum gryphiswaldense biomineralizes magnetosomes, which consist of monocrystalline magnetite cores enveloped by a phospholipid bilayer containing specific proteins. Magnetosomes represent magnetic nanoparticles with unprecedented magnetic and physicochemical characteristics. These make them potentially useful in a number of biotechnological and biomedical applications. Further functionalization can be achieved by expression of foreign proteins via genetic fusion to magnetosome anchor peptides. However, the available genetic tool set for strong and controlled protein expression in magnetotactic bacteria is very limited. Here, we describe versatile vectors for either inducible or high-level constitutive expression of proteins in M. gryphiswaldense. The combination of an engineered native PmamDC promoter with a codon-optimized egfp gene (Mag-egfp) resulted in an 8-fold increase in constitutive expression and in brighter fluorescence. We further demonstrate that the widely used Ptet promoter is functional and tunable in M. gryphiswaldense. Stable and uniform expression of the EGFP and β-glucuronidase (GusA) reporters was achieved by single-copy chromosomal insertion via Tn5-mediated transposition. In addition, gene duplication by Mag-EGFP–EGFP fusions to MamC resulted in further increased magnetosome expression and fluorescence. Between 80 and 210 (for single MamC–Mag-EGFP) and 200 and 520 (for MamC–Mag-EGFP–EGFP) GFP copies were estimated to be expressed per individual magnetosome particle. 相似文献