首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9667篇
  免费   838篇
  国内免费   4篇
  10509篇
  2023年   61篇
  2022年   155篇
  2021年   304篇
  2020年   165篇
  2019年   199篇
  2018年   228篇
  2017年   183篇
  2016年   373篇
  2015年   576篇
  2014年   618篇
  2013年   619篇
  2012年   885篇
  2011年   752篇
  2010年   440篇
  2009年   425篇
  2008年   561篇
  2007年   504篇
  2006年   450篇
  2005年   372篇
  2004年   360篇
  2003年   329篇
  2002年   304篇
  2001年   114篇
  2000年   110篇
  1999年   90篇
  1998年   88篇
  1997年   52篇
  1996年   43篇
  1995年   56篇
  1994年   46篇
  1993年   45篇
  1992年   62篇
  1991年   70篇
  1990年   65篇
  1989年   74篇
  1988年   49篇
  1987年   43篇
  1986年   45篇
  1985年   48篇
  1984年   46篇
  1983年   42篇
  1981年   29篇
  1980年   28篇
  1979年   29篇
  1978年   30篇
  1977年   29篇
  1976年   27篇
  1975年   27篇
  1974年   27篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely QA and QB. These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P+QA? state (P is the primary electron donor) and temperature dependence of the rate of P+QA? charge recombination that are in good agreement show that in the two RC variants, both QA? and QB? are destabilized by about the same free energy amount: respectively ~ 100 ± 5 meV and 90 ± 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of QA? and QB?. This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.  相似文献   
52.
53.
Soluble MHC class I molecules loaded with antigenic peptides are available either to detect and to enumerate or, alternatively, to sort and expand MHC class I-restricted and peptide-reactive T cells. A defined number of MHC class I/peptide complexes can now be implemented to measure T cell responses induced upon Ag-specific stimulation, including CD3/CD8/zeta-chain down-regulation, pattern, and quantity of cytokine secretion. As a paradigm, we analyzed the reactivity of a Melan-A/MART-1-specific and HLA-A2-restricted CD8(+) T cell clone to either soluble or solid-phase presented peptides, including the naturally processed and presented Melan-A/MART-1 peptide AAGIGILTV or the peptide analog ELAGIGILTV presented either by the HLA-A2 wild-type (wt) or mutant (alanineright arrowvaline aa 245) MHC class I molecule, which reduces engagement of the CD8 molecule with the HLA-A2 heavy chain. Soluble MHC class I complexes were used as either monomeric or tetrameric complexes. Soluble monomeric MHC class I complexes, loaded with the Melan-A/MART-1 peptide, resulted in CD3/CD8 and TCR zeta-chain down-regulation, but did not induce measurable cytokine release. In general, differences pertaining to CD3/CD8/zeta-chain regulation and cytokine release, including IL-2, IFN-gamma, and GM-CSF, were associated with 1) the format of Ag presentation (monomeric vs tetrameric MHC class I complexes), 2) wt vs mutant HLA-A2 molecules, and 3) the target Ag (wt vs analog peptide). These differences are to be considered if T cells are exposed to recombinant MHC class I Ags loaded with peptides implemented for detection, activation, or sorting of Ag-specific T cells.  相似文献   
54.
Enzymes are basically composed of 20 naturally occurring amino acids, yet they catalyse a dizzying array of chemical reactions, with regiospecificity and stereospecificity and under physiological conditions. In this review, we attempt to gain some understanding of these complex proteins, from the chemical versatility of the catalytic toolkit, including the use of cofactors (both metal ions and organic molecules), to the complex mapping of reactions to proteins (which is rarely one-to-one), and finally the structural complexity of enzymes and their active sites, often involving multidomain or multisubunit assemblies. This work highlights how the enzymes that we see today reflect millions of years of evolution, involving de novo design followed by exquisite regulation and modulation to create optimal fitness for life.  相似文献   
55.
The aim of the study was to demonstrate seasonal changes in the hydrolytic and transferase activity of neutral α-glucosidase, the level of glucose, cholesterol, triglycerides and total protein in the annual breeding cycle of the carp. The study was conducted on fish from a fish farm in Lower Silesia (Poland). Blood serum was collected from the heart in: June, September and December of two consecutive years. The results of the study show that the hydrolytic and transferase activity of neutral α-glucosidase, as well as the results of basic biochemical parameters are highest in summer, when the fish seek and intake food intensively. The lowest values were observed in spring, when carp have the lowest metabolism after the wintering period.  相似文献   
56.
Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.  相似文献   
57.
The genome of Escherichia coli encodes two class I ribonucleotide reductases. The first, NrdAB, is a well-studied iron-dependent enzyme that is essential for aerobic growth. The second, NrdEF, is not functional under routine conditions, and its role is obscure. Recent studies demonstrated that NrdEF can be activated in vitro by manganese as well as iron. Since iron enzymes are potential targets for hydrogen peroxide, and since the nrdHIEF operon is induced during H(2) O(2) stress, we hypothesized that H(2) O(2) might inactivate NrdAB and that NrdEF might be induced to compensate. This idea was tested using E. coli mutants that are chronically stressed by H(2) O(2) . Contrary to expectation, NrdAB remained active. Its resistance to H(2) O(2) depended upon YfaE, which helps to activate NrdB. The induction of NrdEF during H(2) O(2) stress was mediated by the inactivation of Fur, an iron-dependent repressor. This regulatory arrangement implied that NrdEF has a physiological role during periods of iron starvation. Indeed, NrdEF supported cell replication in iron-depleted cells. Iron bound to NrdF when it was expressed in iron-rich cells, but NrdEF was functional only in cells that were both iron-depleted and manganese-rich. Thus NrdEF supports DNA replication when iron is unavailable to activate the housekeeping NrdAB enzyme.  相似文献   
58.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
59.
Arachidonic acid is a potential paracrine agent released by the uterine endometrial epithelium to induce PTGS2 [PG (prostaglandin)-endoperoxide synthase 2] in the stroma. In the present study, bovine endometrial stromal cells were used to determine whether PTGS2 is induced by arachidonic acid in stromal cells, and to investigate the potential role of PPARs (peroxisome-proliferator-activated receptors) in this effect. Arachidonic acid increased PTGS2 levels up to 7.5-fold within 6 h. The cells expressed PPARalpha and PPARdelta (also known as PPARbeta) (but not PPARgamma). PTGS2 protein level was increased by PPAR agonists, including polyunsaturated fatty acids, synthetic PPAR ligands, PGA1 and NSAIDs (non-steroidal anti-inflammatory drugs) with a time course resembling that of arachidonic acid. Use of agonists and antagonists indicated PPARalpha (but not PPARdelta or PPARgamma) was responsible for PTGS2 induction. PTGS2 induction by arachidonic acid did not require PG synthesis. PTGS2 levels were increased by the PKC (protein kinase C) activators 4beta-PMA and PGF(2alpha), and the effects of arachidonic acid, NSAIDs, synthetic PPAR ligands and 4beta-PMA were blocked by PKC inhibitors. This is consistent with PPAR phosphorylation by PKC. Induction of PTGS2 protein by 4beta-PMA in the absence of a PPAR ligand was decreased by the NF-kappaB (nuclear factor kappaB) inhibitors MG132 and parthenolide, suggesting that PKC acted through NF-kappaB in addition to PPAR phosphorylation. Use of NF-kappaB inhibitors allowed the action of arachidonic acid as a PPAR agonist to be dissociated from an effect through PKC. The results are consistent with the hypothesis that arachidonic acid acts via PPARalpha to increase PTGS2 levels in bovine endometrial stromal cells.  相似文献   
60.
BACKGROUND: Chemical cytometry is an emerging technology that analyzes chemical contents of single cells by means of capillary electrophoresis or capillary chromatography. It has a potential to become an indispensable tool in analyses of heterogeneous cell populations such as those in tumors. Ras oncogenes are found in 30% of human cancers. To become fully functional products, oncogenic Ras proteins require at least three posttranslational modifications: farnesylation, endoproteolysis, and carboxyl-methylation. Therefore, enzymes that catalyze the three reactions, farnesyltransferase (FTase), endoprotease (EPase), and methyltransferase (MTase), are considered highly attractive therapeutic targets. In this work, we used chemical cytometry to study the metabolism of a pentapeptide substrate that can mimic Ras proteins with respect to their posttranslational modifications in solution. METHODS: Mouse mammary gland tumor cells (4T1) and mouse embryo fibroblasts (NIH3T3) were incubated with a fluorescently labeled pentapeptide substrate, 2',7'-difluorofluorescein-5-carboxyl-Gly-Cys-Val-Ilu-Ala. Cells were washed from the substrate and resuspended in phosphate buffered saline. Uptake of the substrate by the cells was monitored by laser scanning confocal microscopy. Single cells were injected into the capillary, lysed, and subjected to capillary electrophoresis. Fluorescent metabolic products were detected by laser-induced fluorescence and compared with products obtained by the conversion of the substrate by FTase, EPase, and MTase in solution. Co-sampling of single cells with the in-vitro products was used for such comparison. RESULTS: Confocal microscopy data showed that the substrate permeated the plasma membrane and clustered in the cytoplasm. Further capillary electrophoresis and chemical cytometry analyses showed that the substrate was converted into three fluorescently labeled products, two of which were secreted in the culture medium and one remained in the cells. The intracellular product was present at approximately 100,000 molecules per cell. The three metabolic products of the substrate were found to be different from the products of its processing by FTase, EPase, and MTase in solution. CONCLUSIONS: This is the first report of chemical cytometry in the context of Ras-signaling studies. The chemical cytometry method used in this work will find applications in the development of suitable peptide substrates for monitoring enzyme activities in single cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号