全文获取类型
收费全文 | 7727篇 |
免费 | 667篇 |
国内免费 | 4篇 |
专业分类
8398篇 |
出版年
2023年 | 58篇 |
2022年 | 143篇 |
2021年 | 274篇 |
2020年 | 148篇 |
2019年 | 178篇 |
2018年 | 210篇 |
2017年 | 169篇 |
2016年 | 341篇 |
2015年 | 516篇 |
2014年 | 527篇 |
2013年 | 541篇 |
2012年 | 767篇 |
2011年 | 658篇 |
2010年 | 389篇 |
2009年 | 376篇 |
2008年 | 499篇 |
2007年 | 428篇 |
2006年 | 387篇 |
2005年 | 288篇 |
2004年 | 293篇 |
2003年 | 264篇 |
2002年 | 243篇 |
2001年 | 59篇 |
2000年 | 34篇 |
1999年 | 50篇 |
1998年 | 61篇 |
1997年 | 29篇 |
1996年 | 22篇 |
1995年 | 28篇 |
1994年 | 23篇 |
1993年 | 28篇 |
1992年 | 24篇 |
1991年 | 23篇 |
1990年 | 16篇 |
1989年 | 21篇 |
1988年 | 15篇 |
1987年 | 12篇 |
1986年 | 11篇 |
1985年 | 16篇 |
1984年 | 15篇 |
1983年 | 25篇 |
1981年 | 16篇 |
1980年 | 13篇 |
1979年 | 13篇 |
1978年 | 16篇 |
1977年 | 13篇 |
1976年 | 11篇 |
1975年 | 10篇 |
1974年 | 11篇 |
1967年 | 8篇 |
排序方式: 共有8398条查询结果,搜索用时 15 毫秒
51.
Efficient in vitro regeneration systems for Vaccinium species 总被引:1,自引:0,他引:1
Julia Meiners Melanie Schwab Iris Szankowski 《Plant Cell, Tissue and Organ Culture》2007,89(2-3):169-176
Efficient protocols for shoot regeneration from leaf explants suitable for micropropagation as well as for the development
of transgenic plants were developed for blueberry (Vaccinium corymbosum) and lingonberry (Vaccinium vitis-idaea) cultivars. Nodal segments were used to initiate in vitro shoot cultures of lingonberry cultivar ‘Red Pearl’ and southern
highbush blueberry cultivar ‘Ozarkblue’. In order to develop an optimized regeneration procedure, different types and concentrations
of plant growth regulators were tested to induce adventitious shoot regeneration on excised leaves from micropropagated shoots
of both cultivars. The effect on percentage regeneration and number of shoots per explant was investigated. Results indicated
that zeatin was superior to TDZ and meta-topolin in promoting adventitious shoot formation. A concentration of 20 μM zeatin
was most effective in promoting shoot regeneration in both cultivars, in case of ‘Red Pearl’ along with 1 μM NAA. Shoots were
either allowed to root in vitro on medium containing IBA or NAA or ex vitro in a fog tunnel. IBA was superior to NAA for induction
of root development in vitro in both Vaccinium cultivars. Ex vitro rooting under high humidity was tested with cuttings from mature field-grown plants, from acclimatized
tissue culture derived plants and with unrooted in vitro proliferated shoots planted directly. It was found that in vitro
shoots rooted better under fog than cuttings from the other plant sources and rooting was equivalent to that achieved in vitro. 相似文献
52.
I Bruce M Akhlaq GC Bloomfield E Budd B Cox B Cuenoud P Finan P Gedeck J Hatto JF Hayler D Head T Keller L Kirman C Leblanc DL Grand C McCarthy D O'Connor C Owen MS Oza G Pilgrim NE Press L Sviridenko L Whitehead 《Bioorganic & medicinal chemistry letters》2012,22(17):5445-5450
Using a parallel synthesis approach to target a non-conserved region of the PI3K catalytic domain a pan-PI3K inhibitor 1 was elaborated to provide alpha, delta and gamma isoform selective Class I PI3K inhibitors 21, 24, 26 and 27. The compounds had good cellular activity and were selective against protein kinases and other members of the PI3K superfamily including mTOR and DNA-PK. 相似文献
53.
Miguel álvaro-Benito Miguel de Abreu Francisco Portillo Julia Sanz-Aparicio María Fernández-Lobato 《Applied and environmental microbiology》2010,76(22):7491-7499
Schwanniomyces occidentalis β-fructofuranosidase (Ffase) releases β-fructose from the nonreducing ends of β-fructans and synthesizes 6-kestose and 1-kestose, both considered prebiotic fructooligosaccharides. Analyzing the amino acid sequence of this protein revealed that it includes a serine instead of a leucine at position 196, caused by a nonuniversal decoding of the unique mRNA leucine codon CUG. Substitution of leucine for Ser196 dramatically lowers the apparent catalytic efficiency (kcat/Km) of the enzyme (approximately 1,000-fold), but surprisingly, its transferase activity is enhanced by almost 3-fold, as is the enzymes'' specificity for 6-kestose synthesis. The influence of 6 Ffase residues on enzyme activity was analyzed on both the Leu196/Ser196 backgrounds (Trp47, Asn49, Asn52, Ser111, Lys181, and Pro232). Only N52S and P232V mutations improved the transferase activity of the wild-type enzyme (about 1.6-fold). Modeling the transfructosylation products into the active site, in combination with an analysis of the kinetics and transfructosylation reactions, defined a new region responsible for the transferase specificity of the enzyme.β-Fructofuranosidases (EC 3.2.1.26) are enzymes of biotechnological interest that catalyze the release of β-fructose from the nonreducing termini of various β-d-fructofuranoside substrates. In general, they exhibit a high degree of sequence homology, and based on their amino acid sequences, they fall into family 32 of the glycosyl-hydrolases (GH), along with invertases, inulinases, and fructosyltransferases (http://www.cazy.org). The GH32 family has been studied intensely, and some three-dimensional structures are now available, such as that of inulinase from Aspergillus awamorii (26), fructan-exohydrolase from Cichorium intybus (CiFEH) (34, 36), or invertase from Thermotoga maritima (2, 3) and Arabidopsis thaliana (35). These proteins contain a five-blade β-propeller N-terminal catalytic module and a C-terminal β-sandwich domain (19). Multiple-sequence alignment of GH32 proteins, which are included in the GH-J clan together with the GH68 proteins of the inulosucrase family, reveals the presence of three conserved motifs, each containing a key acidic residue (in boldface) implicated in substrate binding and hydrolysis: Asn-Asp-Pro-Asn-Gly (NDPNG), Arg-Asp-Pro (RDP), and Glu-Cys (EC) (28). These conserved residues are implicated in a double-displacement reaction in which a covalent glycosyl-enzyme intermediate is formed. Thus, the catalytic mechanism proposed for the Saccharomyces cerevisiae invertase implies that Asp23 (NDPNG) acts as a nucleophile and Glu204 (EC) acts as the acid/base catalyst (29), whereas Asp309 (RDP) of Acetobacter diazotropicus levansucrase influences the efficiency of sucrose hydrolysis (7) and Arg188 and Asp189 of the latter motif define the substrate binding and specificity of exoinulinase from A. awamorii toward fructopyranosyl residues (26).As well as hydrolyzing sucrose, β-fructofuranosidases may also catalyze the synthesis of short-chain fructooligosaccharides (FOS), in which one to three fructosyl moieties are linked to the sucrose skeleton by different glycosidic bonds, depending on the source of the enzyme (12, 21, 31). FOS act as prebiotics, and they exert a beneficial effect on human health, participating in the prevention of cardiovascular diseases, colon cancer, and osteoporosis (16). Currently, FOS are mainly produced by Aspergillus fructosyltransferase in industry (10, 31), providing a mixture of FOS with an inulin-type structure that contains β-(2→1)-linked fructose oligomers (1F-FOS: 1-kestose or nystose). Curiously, when the link between two fructose units (6F-FOS: 6-kestose) or between fructose and the glucosyl moiety (6G-FOS: neokestose) involves a β-(2→6) link, the prebiotic properties of the FOS may be enhanced beyond that of commercial FOS (23).The yeast Schwanniomyces occidentalis (also called Debaryomyces occidentalis) produces a number of extracellular enzymes that make it of interest in biotechnology. Several of its amylolytic enzymes have been characterized, including amylases and glucoamylase (1, 9), as well as an invertase (17). In addition, we also characterized an extracellular β-fructofuranosidase (Ffase) from this yeast that hydrolyzes sucrose, 1-kestose, and nystose (5). This enzyme exhibited a transfructosylating activity that efficiently produces the trisaccharides 6-kestose and 1-kestose in the ratio 3:1, generating the highest 6-kestose yield yet reported, as far as we know. The Ffase three-dimensional structure has recently been solved (6) and represented as a homodimer, each modular subunit arranged like other GH32 enzymes. The Asp50 (NDPNG) and Glu230 (EC) located at the center of the propeller are the catalytic residues implicated in substrate binding and hydrolysis, whereas Arg178 and Asp179 form the RDP motif (6).The genetic codes of some yeasts incorporate certain variations. For example, while CUG was believed to be a universal codon for leucine, in the cytoplasm of certain species of the genus Candida (15) it encodes a serine, as in Pichia farinosa (33). The reassignment of this codon is mediated by a novel serine-tRNA that acquired a leucine 5′-CAG-3′ anticodon (25).Here, we show that deviation from the standard use of the CUG leucine codon to encode serine was correlated with the transferase capacity and specificity of the Ffase enzyme. Indeed, the S196L substitution enhanced the transferase activity of the enzyme 3-fold. Several site-directed mutants were generated and characterized to study their transferase capacities. These results are considered on the basis of the enzymes'' three-dimensional structure, which enables a novel putative binding site of sucrose that serves as a water substitute donor in the hydrolytic reaction yielding the tranglycosylation product 6-kestose to be identified. 相似文献
54.
55.
56.
Sensing and signalling in response to oxygen deprivation in plants and other organisms 总被引:2,自引:0,他引:2
AIMS AND SCOPE: All aerobic organisms require molecular di-oxygen (O2) for efficient production of ATP though oxidative phosphorylation. Cellular depletion of oxygen results in rapid molecular and physiological acclimation. The purpose of this review is to consider the processes of low oxygen sensing and response in diverse organisms, with special consideration of plant cells. CONCLUSIONS: The sensing of oxygen deprivation in bacteria, fungi, metazoa and plants involves multiple sensors and signal transduction pathways. Cellular responses result in a reprogramming of gene expression and metabolic processes that enhance transient survival and can enable long-term tolerance to sub-optimal oxygen levels. The mechanism of sensing can involve molecules that directly bind or react with oxygen (direct sensing), or recognition of altered cellular homeostasis (indirect sensing). The growing knowledge of the activation of genes in response to oxygen deprivation has provided additional information on the response and acclimation processes. Conservation of calcium fluxes and reactive oxygen species as second messengers in signal transduction pathways in metazoa and plants may reflect the elemental importance of rapid sensing of cellular restriction in oxygen by aerobic organisms. 相似文献
57.
Orexins (hypocretins) are involved in the regulation of energy homeostasis and sleeping behavior. Orexins were also implicated in the regulation of neuroendocrine and autonomic functions. Recent data show the expression of orexin receptors within the hypothalamic-pituitary-adrenal (HPA) axis and suggest specific actions of orexins at the pituitary and adrenal glands. To further evaluate the role of orexin in the HPA axis, we investigated the mRNA expression of prepro-orexin (PPO) and orexin receptors within the HPA axis of streptozotocin-injected (STZ) rats showing type-1 like diabetes. PPO, as well as OX(1) and OX(2) receptor levels were analyzed by quantitative real-time PCR (qPCR). STZ rats were characterized by decreased body weight, plasma insulin, and leptin levels and by increased plasma glucose. Hypothalamic PPO mRNA levels were significantly reduced in STZ compared to non-diabetic control rats. No differences were found in the mRNA levels of hypothalamic or pituitary OX(1) and OX(2) receptors between control and STZ rats. In adrenals, OX(1) receptor mRNA levels were significantly elevated in STZ rats while OX(2) receptors were significantly reduced. Our results imply distinct functions of adrenal orexin receptor subtypes during type-1 like diabetes. 相似文献
58.
Krishna Saxena Ulrich Schieborr Oliver Anderka Elke Duchardt-Ferner Bettina Elshorst Santosh Lakshmi Gande Julia Janzon Denis Kudlinzki Sridhar Sreeramulu Matthias K. Dreyer K. Ulrich Wendt Corentin Herbert Philippe Duchaussoy Marc Bianciotto Pierre-Alexandre Driguez Gilbert Lassalle Pierre Savi Moosa Mohammadi Fran?oise Bono Harald Schwalbe 《The Journal of biological chemistry》2010,285(34):26628-26640
Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF·FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM6), octasaccharide (HM8), and decasaccharide (HM10), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM8 and HM10 are significantly more potent than HM6 in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1·FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2·FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1·FGFR4 interaction site and a direct FGFR4·FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF·FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM8 relative to HM6 in stimulating FGF2·FGFR4 signaling correlates with the higher affinity of HM8 to bind and dimerize FGF2. Notably FGF2·HM8 exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF·FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs. 相似文献
59.
60.
Kozma N Halasz M Polgar B Poehlmann TG Markert UR Palkovics T Keszei M Par G Kiss K Szeberenyi J Grama L Szekeres-Bartho J 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(2):819-826
Progesterone-induced blocking factor (PIBF) induces Th2-dominant cytokine production. Western blotting and EMSA revealed phosphorylation as well as nuclear translocation of STAT6 and inhibition of STAT4 phosphorylation in PIBF-treated cells. The silencing of STAT6 by small interfering RNA reduced the cytokine effects. Because the activation of the STAT6 pathway depends on the ligation of IL-4R, we tested the involvement of IL-4R in PIBF-induced STAT6 activation. Although PIBF does not bind to IL-4R, the blocking of the latter with an Ab abolished PIBF-induced STAT6 activation, whereas the blocking of the IL-13R had no effect. PIBF activated suppressor of cytokine signaling-3 and inhibited IL-12-induced suppressor of cytokine signaling-1 activation. The blocking of IL-4R counteracted all the described effects, suggesting that the PIBF receptor interacts with IL-4R alpha-chain, allowing PIBF to activate the STAT6 pathway. PIBF did not phosphorylate Jak3, suggesting that the gamma-chain is not needed for PIBF signaling. Confocal microscopic analysis revealed a colocalization and at 37 degrees C a cocapping of the FITC PIBF-activated PIBF receptor and PE anti-IL-4R-labeled IL-4R. After the digestion of the cells with phosphatidylinositol-specific phospholipase C, the STAT6-activating effect of PIBF was lost, whereas that of IL-4 remained unaltered. These data suggest the existence of a novel type of IL-4R composed of the IL-4R alpha-chain and the GPI-anchored PIBF receptor. 相似文献