首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   54篇
  927篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   14篇
  2019年   16篇
  2018年   11篇
  2017年   18篇
  2016年   32篇
  2015年   30篇
  2014年   37篇
  2013年   46篇
  2012年   67篇
  2011年   59篇
  2010年   47篇
  2009年   29篇
  2008年   57篇
  2007年   46篇
  2006年   46篇
  2005年   51篇
  2004年   47篇
  2003年   38篇
  2002年   36篇
  2001年   17篇
  2000年   13篇
  1999年   18篇
  1998年   17篇
  1997年   13篇
  1996年   15篇
  1995年   11篇
  1994年   7篇
  1993年   7篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有927条查询结果,搜索用时 15 毫秒
91.
ABSTRACT: BACKGROUND: Clinical and experimental studies have demonstrated that seizures can cause molecular and cellular responses resulting in neuronal damage. At present, there are no valid tests for assessing organic damage to the brain associated with seizure. The aim of this study was to investigate cerebrospinal fluid (CSF) and plasma concentrations of Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), a sensitive indicator of acute injury to brain neurons, in patients with tonic--clonic or partial secondarily generalized seizures due to various etiologies. METHODS: CSF and plasma concentrations of UCH-L1 were assessed in 52 patients within 48 hours after epileptic seizure and in 19 controls using ELISA assays. RESULTS: CSF obtained within 48 hours after seizure or status epilepticus (SE) presented significantly higher levels of UCH-L1 compared to controls (p = 0.008). Plasma UCH-L1 concentrations were negatively correlated with time to sample withdrawal. An analysis conducted using only the first 12 hours post-seizure revealed significant differences between concentrations of UCH-L1 in plasma and controls (p = 0.025). CSF and plasma concentrations were strongly correlated with age in patients with seizure, but not in control patients. Plasma UCH-L1 levels were also significantly higher in patients after recurrent seizures (n = 4) than in those after one or two seizures (p = 0.013 and p = 0.024, respectively). CONCLUSION: Our results suggest that determining levels of neuronal proteins may provide valuable information on the assessment of brain damage following seizure. These data might allow clinicians to make more accurate therapeutic decisions, to identify patients at risk of progression and, ultimately, to provide new opportunities for monitoring therapy and targeted therapeutic interventions.  相似文献   
92.

Background

Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed.

Methodology/Principal Findings

We characterized the genes generally involved in human advanced atherosclerotic (AHA type V–VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25).

Conclusions

This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds.  相似文献   
93.
Pristine peatlands are carbon (C)‐accumulating wetland ecosystems sustained by a high water table (WT) and consequent anoxia that slows down decomposition. Persistent WT drawdown as a response to climate and/or land‐use change affects decomposition either directly through environmental factors such as increased oxygenation, or indirectly through changes in plant community composition. This study attempts to disentangle the direct and indirect effects of WT drawdown by measuring the relative importance of environmental parameters (WT depth, temperature, soil chemistry) and litter type and/or litter chemical quality on the 2‐year decomposition rates of above‐ and belowground litter (altogether 39 litter types). Consequences for organic matter accumulation were estimated based on the annual litter production. The study sites were chosen to form a three‐stage chronosequence from pristine (undrained) to short‐term (years) and long‐term (decades) WT drawdown conditions at three nutrient regimes. The direct effects of WT drawdown were overruled by the indirect effects through changes in litter type composition and production. Short‐term responses to WT drawdown were small. In long‐term, dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Furthermore, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. Our results show that the shift in vegetation composition as a response to climate and/or land‐use change is the main factor affecting peatland ecosystem C cycle, and thus dynamic vegetation is a necessity in any model applied for estimating responses of C fluxes to changing environment. We provide possible grouping of litter types into plant functional types that the models could utilize. Furthermore, our results clearly show a drop in soil summer temperature as a response to WT drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.  相似文献   
94.
95.
96.
Measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) alone is only a moderate predictor of fracture risk. Finite element analysis (FEA) of bone mechanics, based on DXA images, may improve the prediction of fracture risk. We developed a method to estimate the 3D shape and density distribution of the proximal femur, using a 2D BMD image and a femur shape template. Proximal femurs of eighteen human cadavers were imaged using computed tomography and divided into two sets (N = 9 + 9). The template was created from the samples in first set by using 3D generalized Procrustes analysis and thin-plate splines. Subsequently, the template and 2D BMD image were utilized to estimate the shape and internal density distribution of the femurs in the second set. Finally, FEA was conducted based on the original and the estimated bone models to evaluate the effect of geometrical and density distributional errors on the mechanical strength. The volumetric errors induced by the estimation itself were low (<1.4%). In the estimation of bones in the second set, the mean distance difference between the estimated and the original bone surfaces was 0.80 ± 0.19 mm, suggesting feasible estimation of the femoral shape. The mean absolute error in voxel-by-voxel BMD was 120±8 mg cm?3. In FEA, the stiffness of the proximal femur differed by -7±16% between the original and estimated bones. The present method, in comparison with methods used in previous studies, improved the prediction of the geometry, the BMD distribution and the mechanical characteristics of the proximal femur. Potentially, the proposed method could ultimately improve the determination of bone fracture risk.  相似文献   
97.
Proper muscle activation is a key feature of survival in different tasks in daily life as well as sports performance, but can be impaired in elderly and in diseases. Therefore it is also clinically important to better understand the phenomenon that can be elucidated in humans non-invasively by positron emission tomography (PET) with measurements of spatial heterogeneity of glucose uptake within and among muscles during exercise. We studied six healthy young men during 35 minutes of cycling at relative intensities of 30% (low), 55% (moderate), and 75% (high) of maximal oxygen consumption on three separate days. Glucose uptake in the quadriceps femoris muscle group (QF), the main force producing muscle group in recreational cycling, and its four individual muscles, was directly measured using PET and 18F-fluoro-deoxy-glucose. Within-muscle heterogeneity was determined by calculating the coefficient of variance (CV) of glucose uptake in PET image voxels within the muscle of interest, and among-muscles heterogeneity of glucose uptake in QF was expressed as CV of the mean glucose uptake values of its separate muscles. With increasing intensity, within-muscle heterogeneity decreased in the entire QF as well as within its all four individual parts. Among-muscles glucose uptake heterogeneity also decreased with increasing intensity. However, mean glucose uptake was consistently lower and heterogeneity higher in rectus femoris muscle that is known to consist of the highest percentage of fast twitch type II fibers, compared to the other three QF muscles. In conclusion, these results show that in addition to increased contribution of distinct muscle parts, with increases in exercise intensity there is also an enhanced recruitment of muscle fibers within all of the four heads of QF, despite established differences in muscle-part specific fiber type distributions. Glucose uptake heterogeneity may serve as a useful non-invasive tool to elucidate muscle activation in aging and diseased populations.  相似文献   
98.
99.
Mechanical properties of articular cartilage are controlled by tissue composition and structure. Cartilage function is sensitively altered during tissue degeneration, in osteoarthritis (OA). However, mechanical properties of the tissue cannot be determined non-invasively. In the present study, we evaluate the feasibility to predict, without mechanical testing, the stress-relaxation response of human articular cartilage under unconfined compression. This is carried out by combining microscopic and biochemical analyses with composition-based mathematical modeling. Cartilage samples from five cadaver patellae were mechanically tested under unconfined compression. Depth-dependent collagen content and fibril orientation, as well as proteoglycan and water content were derived by combining Fourier transform infrared imaging, biochemical analyses and polarized light microscopy. Finite element models were constructed for each sample in unconfined compression geometry. First, composition-based fibril-reinforced poroviscoelastic swelling models, including composition and structure obtained from microscopical and biochemical analyses were fitted to experimental stress-relaxation responses of three samples. Subsequently, optimized values of model constants, as well as compositional and structural parameters were implemented in the models of two additional samples to validate the optimization. Theoretical stress-relaxation curves agreed with the experimental tests (R=0.95-0.99). Using the optimized values of mechanical parameters, as well as composition and structure of additional samples, we were able to predict their mechanical behavior in unconfined compression, without mechanical testing (R=0.98). Our results suggest that specific information on tissue composition and structure might enable assessment of cartilage mechanics without mechanical testing.  相似文献   
100.
In this work we present the results of numerical and experimental dosimetry carried out for an in vitro exposure device to irradiate sample groups at 900 MHz. The cells are kept in 8 and 15 ml cell cultures, contained, respectively in T25 and T75 rectangular flasks. The dosimetric assessment of the distribution of the specific absorption rate (SAR) is performed for both the bottom of the flask and the whole volume of the sample to provide results for experiments on either the cell layer or the cell suspension. The irradiating chamber is a rectangular waveguide (WG). Different configurations are considered to assess the optimum orientation and positioning of the cell cultures inside the WG. The system performance is optimal when the electric field is parallel to the sample and the WG is terminated by a matched load. In this condition two 15 or four 8 ml cells cultures can be exposed. The efficiency (ratio between the power absorbed by the sample and the incident power) and the non-uniformity degree (ratio between the standard deviation of SAR values and the average SAR over the sample) are calculated and successfully verified through measurements of the scattering parameters and local temperature increases. In the chosen exposure configuration, the efficiency is 0.40 and the non-uniformity degree is 39% for the 15 ml samples. For the 8 ml samples, the efficiency is 0.19 and a low non-uniformity degree (15%) is found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号