首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   30篇
  339篇
  2023年   1篇
  2022年   8篇
  2021年   9篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   11篇
  2015年   11篇
  2014年   9篇
  2013年   9篇
  2012年   23篇
  2011年   23篇
  2010年   11篇
  2009年   11篇
  2008年   22篇
  2007年   19篇
  2006年   28篇
  2005年   11篇
  2004年   16篇
  2003年   17篇
  2002年   18篇
  2001年   14篇
  2000年   20篇
  1999年   21篇
  1998年   4篇
  1997年   1篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
81.
Glycan array analysis of Sclerotium rolfsii lectin (SRL) revealed its exquisite binding specificity to the oncofetal Thomsen-Friedenreich (Galβ1-3GalNAcα-O-Ser/Thr, T or TF) antigen and its derivatives. This study shows that SRL strongly inhibits the growth of human colon cancer HT29 and DLD-1 cells by binding to cell surface glycans and induction of apoptosis through both the caspase-8 and -9 mediated signaling. SRL showed no or very weak binding to normal human colon tissues but strong binding to cancerous and metastatic tissues. Intratumor injection of SRL at subtoxic concentrations in NOD-SCID mice bearing HT29 xenografts resulted in total tumor regression in 9 days and no subsequent tumor recurrence. As the increased expression of TF-associated glycans is commonly seen in human cancers, SRL has the potential to be developed as a therapeutic agent for cancer.  相似文献   
82.
Novel orange pigmented, Gram-negative-staining, rod-shaped, non-motile, strictly aerobic strains designated NIO-S1(T) and NIO-S2 were isolated from the water sample of a pond adjacent to the coast and an algal mat from a fish pond, respectively, at Kakinada, India. Both strains were positive for oxidase, catalase and β-galactosidase activities. The predominant fatty acids in NIO-S1(T) were iso-C(15:0) (39.6%), anteiso-C(15:0) (9.9%), iso-C(17:0) 3OH (10.9%) and C(16:1)ω7c/C(16:1)ω6c (summed feature 3) (5.7%). The strains contained MK-7 as the major respiratory quinine, and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unidentified lipids as the polar lipids. Phylogenetic analysis indicated that strain NIO-S1(T) was a member of the family "Cyclobacteriaceae" of the class "Sphingobacteriia" and it clustered with the genera Fontibacter, Cecembia and Aquiflexum with phylogenetic distances of 6.8, 9.0 and 12.2% (93.2, 91.0 and 87.8% similarity), respectively. DNA-DNA hybridization between strains NIO-S1(T) and NIO-S2 showed a relatedness of 93% and rep-PCR banding patterns were similar. Based on data from the current polyphasic study, it is proposed that the new isolates be placed in a new genus and species with the name Shivajiella indica gen. nov., sp. nov. The type strain of Shivajiella indica is NIO-S1(T) (= KCTC 19812(T)=MTCC 11065(T)).  相似文献   
83.
84.
The chondroitinases are bacterial lyases that specifically cleave chondroitin sulfate and/or dermatan sulfate glycosaminoglycans. One of these enzymes, chondroitinase ABC I from Proteus vulgaris, has the broadest substrate specificity and has been widely used to depolymerize these glycosaminoglycans. Biochemical and structural studies to investigate the active site of chondroitinase ABC I have provided important insights into the catalytic amino acids. In this study, we demonstrate that calcium, a divalent ion, preferentially increases the activity of chondroitinase ABC I toward dermatan versus chondroitin substrates in a concentration-dependent manner. Through biochemical and biophysical investigations, we have established that chondroitinase ABC I binds calcium. Experiments using terbium, a fluorescent calcium analogue, confirm the specificity of this interaction. On the basis of theoretical structural models of the enzyme-substrate complexes, specific amino acids that could potentially play a role in calcium coordination were identified. These amino acids were investigated through site-directed mutagenesis studies and kinetic assays to identify possible mechanisms for calcium-mediated processing of the dermatan substrate in the active site of the enzyme.  相似文献   
85.
86.
The Anabaena sensory rhodopsin transducer (ASRT) is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies.  相似文献   
87.
We demonstrate construction and novel compound synthesis from a synthetic metabolic pathway consisting of a type III polyketide synthase (PKS) known as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS) from Streptomyces coelicolor and soybean peroxidase (SBP) in a microfluidic platform. THNS immobilized to Ni-NTA agarose beads is prepacked into a microfluidic channel, while SBP is covalently attached to the walls of a second microfluidic channel precoated with a reactive poly(maleic anhydride) derivative. The result is a tandem, two-step biochip that enables the synthesis of novel polyketide derivatives. The first microchannel, consisting of THNS, results in the conversion of malonyl-CoA to flaviolin in yields up to 40% with a residence time of 6 min. This conversion is similar to that obtained in several-milliliter batch reactions after 2 h. Linking this microchannel to the SBP microchannel results in biflaviolin synthesis. During the course of this work, we discovered that the substrate specificity of THNS could be manipulated by simply changing the reaction pH. As a result, the starter acyl-CoA specificity can be broadened to yield a series of truncated pyrone products. When combined with variations in the ratio of acyl-CoA and malonyl-CoA (extender substrate) feed rates, high yields of the pyrone products could be achieved, which is further structurally diversified from self- and cross-coupling in the SBP microchannel. The ability to rapidly evaluate the effects of reaction conditions and synthetic multienzyme pathways on a microfludic platform provides a new paradigm for performing metabolic pathway engineering, namely, the reconstruction of pathways for use in new compound discovery.  相似文献   
88.
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.  相似文献   
89.
The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.  相似文献   
90.
All the detectable metallo-beta-lactamase fold proteins were identified in the publicly available sequence databases and complete genome sequences using iterative profile searches with the PSI-BLAST program and motif searches with position specific weight matrices. The catalytic site/mechanism and the corresponding structural elements were characterized for these proteins based on the available structure of the Bacillus zinc-dependent beta-lactamase. Based on pair-wise sequence and phylogenetic analysis an evolutionary classification for enzymes of this fold was developed and discussed in terms of implications for substrate specificity. Finally, some predicted inactive members which have been recruited for non-enzymatic functions such as microtubule binding in a cytoskeletal MAP1 are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号