首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2801篇
  免费   243篇
  国内免费   8篇
  3052篇
  2022年   26篇
  2021年   40篇
  2020年   23篇
  2019年   31篇
  2018年   42篇
  2017年   22篇
  2016年   51篇
  2015年   120篇
  2014年   124篇
  2013年   146篇
  2012年   194篇
  2011年   198篇
  2010年   110篇
  2009年   98篇
  2008年   141篇
  2007年   135篇
  2006年   155篇
  2005年   149篇
  2004年   140篇
  2003年   109篇
  2002年   80篇
  2001年   83篇
  2000年   82篇
  1999年   67篇
  1998年   32篇
  1997年   28篇
  1996年   22篇
  1995年   23篇
  1994年   22篇
  1993年   18篇
  1992年   58篇
  1991年   36篇
  1990年   38篇
  1989年   43篇
  1988年   29篇
  1987年   29篇
  1986年   31篇
  1985年   35篇
  1984年   20篇
  1983年   30篇
  1982年   13篇
  1981年   13篇
  1979年   21篇
  1978年   10篇
  1977年   18篇
  1976年   12篇
  1975年   11篇
  1974年   10篇
  1972年   21篇
  1971年   16篇
排序方式: 共有3052条查询结果,搜索用时 0 毫秒
101.
Cancerous inhibitor of PP2A (CIP2A) is a novel human oncoprotein that inhibits PP2A, contributing to tumor aggressiveness in various cancers. Several studies have shown that downregulation of CIP2A by small molecules reduces PP2A-dependent phosphorylation of Akt and induces cell death. Here, a series of mono- and di-substituted quinazoline and pyrimidine derivatives based on the skeleton of erlotinib (an EGFR inhibitor) were synthesized and their bioactivities against hepatocellular carcinoma were evaluated. The di-substituted quinazoline and pyrimidine derivatives were more potent inhibitors of cancer-cell proliferation than the mono-substituted derivatives. In particular, compound 1 with chloride at position 2 of quinazoline was as potent as erlotinib in inducing cell death but no inhibition for EGFR activity. Further assays confirmed a correlation between cell death, and CIP2A and Akt inhibition by these derivatives. Among all the derivatives, compounds 19 and 22 showed the most potent antiproliferative activities and the strongest inhibition of CIP2A and p-Akt expression.  相似文献   
102.
Nijmegen breakage syndrome (NBS) is a chromosomal instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1 (p95) or nibrin, is a part of the hMre11 complex, a central player associated with double strand break repair. We previously demonstrated that c-Myc directly activates NBS1 expression. Here we have shown that constitutive expression of NBS1 in Rat1a and HeLa cells induces/enhances their transformation. Repression of endogenous NBS1 levels using short interference RNA reduces the transformation activity of two tumor cell lines. Increased NBS1 expression is observed in 40-52% of non-small cell lung carcinoma, hepatoma, and esophageal cancer samples. NBS1 overexpression stimulates phosphatidylinositol (PI) 3-kinase activity, leading to increased phosphorylation levels of Akt and its downstream targets such as glycogen synthase kinase 3beta and mammalian target of rapamycin in different cell lines and tumor samples. Transformation induced by NBS1 overexpression can be inhibited by a PI3-kinase inhibitor (LY294002). Repression of endogenous Akt expression by short interference RNA decreases the transformation activity of Rat1a cells overexpressing NBS1. These results indicate that overexpression of NBS1 is an oncogenic event that contributes to transformation through the activation of PI3-kinase/Akt.  相似文献   
103.
104.
Prediction of protease types in a hybridization space   总被引:2,自引:0,他引:2  
Regulating most physiological processes by controlling the activation, synthesis, and turnover of proteins, proteases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, ageing, and death of all organisms. Different types of proteases have different functions and biological processes. Therefore, it is important for both basic research and drug discovery to consider the following two problems. (1) Given the sequence of a protein, can we identify whether it is a protease or non-protease? (2) If it is, what protease type does it belong to? Although the two problems can be solved by various experimental means, it is both time-consuming and costly to do so. The avalanche of protein sequences generated in the post-genetic era has challenged us to develop an automated method for making a fast and reliable identification. By hybridizing the functional domain composition and pseudo-amino acid composition, we have introduced a new method called "FunD-PseAA predictor" that is operated in a hybridization space. To avoid redundancy and bias, demonstrations were performed on a dataset where none of the proteins has >or=25% sequence identity to any other. The overall success rate thus obtained by the jackknife cross-validation test in identifying protease and non-protease was 92.95%, and that in identifying the protease type was 94.75% among the following six types: (1) aspartic, (2) cysteine, (3) glutamic, (4) metallo, (5) serine, and (6) threonine. Demonstration was also made on an independent dataset, and the corresponding overall success rates were 98.36% and 97.11%, respectively, suggesting the FunD-PseAA predictor is very powerful and may become a useful tool in bioinformatics and proteomics.  相似文献   
105.
106.
107.
Hepatitis C virus (HCV) is a major human pathogen causing chronic liver disease, which leads to cirrhosis of liver and hepatocellular carcinoma. The HCV core protein, a viral nucleocapsid, has been shown to affect various intracellular events, including cell proliferation and apoptosis. However, the precise mechanisms of the effects are not fully understood. In this study, we show that HCV core protein sensitizes human hepatocellular carcinoma cell line, Huh7, conferred sensitivity to TRAIL-, but not Fas ligand-mediated apoptosis. Huh7 cells are resistant to TRAIL, despite the induction of caspase-8 after TRAIL engagement. However, HCV core protein induces TRAIL apoptosis signaling via sequential induction of caspase-8, Bid cleavage, activation of mitochondrial pathway, and effector caspase-3. HCV core protein also induces activation of caspase-9 after TRAIL engagement, and the induction of TRAIL sensitivity by HCV core protein could be reversed by caspase-9 inhibitor. Therefore, the HCV core protein-induced TRAIL-mediated apoptosis is dependent upon activation of caspase-8 downstream pathway to convey the death signal to mitochondria, leading to activation of mitochondrial signaling pathway and breaking the apoptosis resistance. These results combined indicate that the HCV core protein enhances TRAIL-, but not Fas ligand-mediated apoptotic cell death in Huh7 cells via a mechanism dependent on the activation of mitochondria apoptosis signaling pathway. These results suggest that HCV core protein may have a role in immune-mediated liver cell injury by modulation of TRAIL-induced apoptosis.  相似文献   
108.
109.
Based on CHARMM potential (Brooks et al., 1983) an energetic analysis has been carried out for four typical 4-alpha-helix bundle proteins, i.e., methemerythrin, cytochrome b-562, cytochrome c', and bovine somatotropin. The bovine somatotropin possesses long loops, but all the other three proteins have short loops. It was found that in all these four 4-alpha-helix bundle motif structures the interaction between loops and helices was much stronger than the interaction among the four helices themselves. Particularly for the electrostatic interaction energy, the loop-helix interaction is overwhelmingly stronger than the interhelix interaction although the latter involves the favorable helix dipole interaction due to the antiparallel arrangement of neighboring alpha-helices. The present study indicates that such a conclusion holds true regardless of what loops, long or short, are in the 4-alpha-helix bundle protein, and also regardless of which empirical potential, ECEPP or CHARMM, is used for calculations although in CHARMM the electrostatic energy is much more heavily emphasized than in ECEPP. Therefore, no appropriate conclusion can be drawn in arguing whether the dipole interaction among the four alpha-helices play a stabilizing role or destabilizing role for a 4-alpha-helix bundle protein without taking into consideration the effect of interaction between helices and loops. The calculated results reported here provide, from a different point of view, insights that might be useful for revealing the essence of the driving forces during the folding of proteins.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号