首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   6篇
  2014年   2篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
41.
42.
One previously known and three novel quinolinyl phosphanes were synthesized by either a reaction between a lithiated diphenylphosphane and the appropriate chloroquinoline or by a reaction between a lithiated haloquinoline and an arylchlorophosphane. The reaction of the quinolinyl phenylphosphane ligands with PdCl2(cod) produced monomeric palladium complexes in diethyl ether and dimeric, chlorine-bridged complexes in dichloromethane. Crystal structures of the palladium complexes confirm that the quinolinyl phenylphosphanes do not form chelated structures while bonded to the metal centre. 2-Quinolinyl(diphenyl)phosphane has a tendency to form a cis-isomer while bonded to the metal centre in the mononuclear complex due to attractive interactions between two ligands. A catalytic study showed that the quinolinyl phenylphosphane ligands are moderately active in the Suzuki-Miyaura coupling of various aryl halides in air.  相似文献   
43.
44.
45.
The rapid decrease of biodiversity and limited resources for surveying it have forced researchers to devise short-cuts for biodiversity surveys and conservation planning. These short-cuts include environmental surrogates, higher taxon surrogates, indicator species and indicator groups. We considered indicator groups as surrogates for wholesale biodiversity and cross-taxon congruence in biodiversity patterns in littoral macroinvertebrates of boreal lakes. Despite the fact that we considered indicator groups amongst a wide variety of taxa, such as two-winged flies, mayflies, caddisflies, beetles, bugs and molluscs, none of the proposed groups possessed all of the qualities of a good indicator taxon for biodiversity surveys and conservation planning. We found generally weak, yet typically significant, relationships between the proposed indicator groups and remaining taxa in both species richness and assemblage similarity. Low congruence was paralleled by somewhat differing relationships of the taxonomic groups to various environmental features of lakes. Furthermore, the relationships of most indicator groups to the environmental features of lakes were not particularly strong. The present findings are unfortunate, because indicator groups did not perform well in predicting the wholesale biodiversity of littoral macroinvertebrates. Thus, there appears to be no short-cut for considering all groups of macroinvertebrates in biodiversity surveys, conservation planning and characterisation of environmental relationships of lake littoral assemblages.  相似文献   
46.
47.
Subtilisin QK, which is newly identified as a fibrinolytic enzyme from Bacillus subtilis QK02, has the ability of preventing nitrotyrosine formation in bovine serum albumin induced by nitrite, hydrogen peroxide and hemoglobin in vitro verified by ELISA, Western-blot and spectrophotometer assay. Subtilisin QK also attenuates the fluorescence emission spectra of bovine serum albumin in the course of oxidation caused by nitrite, hydrogen peroxide and hemoglobin. Furthermore, subtilisin QK could suppress the transformation of oxy-hemoglobin to met-hemoglobin caused by sodium nitrite, but not the heat-treated subtilisn QK. Compared with some other fibrinolytic enzymes and inactivated subtilisin QK treated by phenylmethylsulfonylfluoride, the ability of inhibiting met-hemoglobin formation of subtilisin QK reveals that the anti-oxidative ability of subtilisin QK is not concerned with its fibrinolytic function. Additionally, nitrotyrosine formation in proteins from brain, heart, liver, kidney, and muscle of mice that is intramuscular injected the mixture of nitrite, hydrogen peroxide and hemoglobin is attenuated by subtilisin QK. Subtilisin QK can also protect Human umbilical vein endothelial cell (ECV-304) from the damage caused by nitrite and hydrogen peroxide.  相似文献   
48.

Objectives

A number of studies have demonstrated the ontogenetic plasticity of long bone diaphyseal structure in response to mechanical loading. Captivity should affect mechanical loading of the limbs, but whether captive apes grow differently than wild apes has been debated. Here, we compare captive and wild juvenile and adult Gorilla to ascertain whether growth trajectories in cross‐sectional diaphyseal shape are similar in the two environments.

Materials and methods

A sample of young juvenile (n = 4) and adult (n = 10) captive Gorilla gorilla gorilla specimens, with known life histories, were compared with age‐matched wild G.g. gorilla (n = 62) and G. beringei beringei (n = 75) in relative anteroposterior to mediolateral bending strength of the femur, tibia, and humerus. Cross sections were obtained using peripheral quantitative CT.

Results

Captive and wild adult G.g. gorilla differed in bending strength ratios for all three bones, but these differences were not present in young juvenile G.g. gorilla. In comparisons across taxa, captive juvenile G.g. gorilla were more similar to wild G.g. gorilla than to G.b. beringei, while captive adult G.g. gorilla were more similar in shape to G.b. beringei in the hind limb.

Discussion

Captive and wild G. gorilla follow different ontogenetic trajectories in long bone diaphyseal shape, corresponding to environmental differences and subsequent modified locomotor behaviors. Differences related to phylogeny are most evident early in development.
  相似文献   
49.
Herpes simplex virus (HSV) 1 stimulates type I IFN expression through the cGAS–STING–TBK1 signaling axis. Macrophages have recently been proposed to be an essential source of IFN during viral infection. However, it is not known how HSV‐1 inhibits IFN expression in this cell type. Here, we show that HSV‐1 inhibits type I IFN induction through the cGAS–STING–TBK1 pathway in human macrophages, in a manner dependent on the conserved herpesvirus protein ICP27. This viral protein was expressed de novo in macrophages with early nuclear localization followed by later translocation to the cytoplasm where ICP27 prevented activation of IRF3. ICP27 interacted with TBK1 and STING in a manner that was dependent on TBK1 activity and the RGG motif in ICP27. Thus, HSV‐1 inhibits expression of type I IFN in human macrophages through ICP27‐dependent targeting of the TBK1‐activated STING signalsome.  相似文献   
50.
Chlorophyll a fluorescence (ChlF) is closely related to photosynthesis and can be measured remotely using multiple spectral features as solar‐induced fluorescence (SIF). In boreal regions, SIF shows particular promise as an indicator of photosynthesis, in part because of the limited variation of seasonal light absorption in these ecosystems. Seasonal spectral changes in ChlF could yield new information on processes such as sustained nonphotochemical quenching (NPQS) but also disrupt the relationship between SIF and photosynthesis. We followed ChlF and functional and biochemical properties of Pinus sylvestris needles during the photosynthetic spring recovery period to answer the following: (a) How ChlF spectra change over seasonal timescales? (b) How pigments, NPQS, and total photosynthetically active radiation (PAR) absorption drive changes of ChlF spectra? (c) Do all ChlF wavelengths track photosynthetic seasonality? We found seasonal ChlF variation in the red and far‐red wavelengths, which was strongly correlated with NPQS, carotenoid content, and photosynthesis (enhanced in the red), but not with PAR absorption. Furthermore, a rapid decrease in red/far‐red ChlF ratio occurred in response to a cold spell, potentially relating to the structural reorganization of the photosystems. We conclude that all current SIF retrieval features can track seasonal photosynthetic dynamics in boreal evergreens, but the full SIF spectra provides additional insight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号