首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   15篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   7篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
41.
Rice flour is a well-known and characterized source of pharmaceutical ingredients, which are gluten-free and incorporated in many drug delivery applications such as excipient starch. To further exploit this uniqueness, the synthetic capacity of rice endosperm tissue, the basis of rice flour, was extended by genetic transformation. Recombinant human GM-CSF, a cytokine used in treating neutropenia and with other potential clinical applications, has been expressed in transgenic rice seeds using a rice glutelin promoter. Rice seeds accumulated human GM-CSF to a level of 1.3% of total soluble protein. The rice seed-produced human GM-CSF was found to be biologically active when tested using a human cell line TF-1. Use of rice as a host plant offers not only attractive features of safe production in seeds but also self-containment of foreign genes, as rice is primarily a self-pollinated crop plant. Ravinder Sardana and Anil K. Dudani contributed equally to this work.  相似文献   
42.
Lack of TIM-3 immunoregulation in multiple sclerosis   总被引:2,自引:0,他引:2  
Multiple sclerosis (MS) is an inflammatory disease of the CNS white matter associated with T cell infiltrates and alterations of immune functions that can be measured in the peripheral immune system. TIM-3 has been identified as a central regulator of IFN-gamma-secreting type 1 Th (Th1) cells and immune tolerance. In this study, using a newly generated mAb against human TIM-3, we examined TIM-3 function on ex vivo CD4(+) T cells isolated from the circulation of healthy subjects and patients with MS. Blocking TIM-3 during T cell stimulation significantly enhanced IFN-gamma secretion in control subjects but had no effect in untreated patients with MS, demonstrating a defect in TIM-3 immunoregulation. Treatment with glatiramer acetate or IFN-beta reversed this functional defect. Reduced levels and altered kinetics of T cell TIM-3 expression, which was restored in treated patients, is one mechanism that can explain the loss of TIM-3 regulation of T cell function in untreated patients with MS. These data provide functional, mechanistic data for dysregulated TIM-3 immunoregulation in a human autoimmune disease and suggest that approved therapies for the treatment of MS may function in part by restoring TIM-3 immunoregulation of T cell function.  相似文献   
43.
Production of recombinant subunit vaccines in transgenic plants may be a means of reducing vaccine costs while increasing availability and safety. A plant-derived product found safe and effective for oral administration would provide additional advantages when used as a vaccine. Outstanding issues with the technology include transgene stability through successive generations and consistent bioproduction. We previously reported expression of glycoprotein B (gB) of human cytomegalovirus in seeds of transgenic tobacco. Here the goal was to determine if gB could be similarly expressed in rice, and if so, to examine expression over several plant generations. Results show that immunoreactive gB was successfully expressed in transgenic rice seeds, with sustained expression over three generations. The gB contained several neutralizing epitopes and was stable over 27 months.  相似文献   
44.
A plant based high fidelity vaccine production system is being developed with emphasis on producing antigens capable of being orally delivered in multivalent or subunit plant packets. Plant-based edible vaccines may provide an attractive, safe and inexpensive alternative to conventional vaccine production. Edible plant tissues are not normally antigenic in nature. However, foreign antigens from common infectious organisms like hepatitis-B virus (HBV) can be produced along with naturally occurring storage proteins in DNA-transformed plants. Upon administration via the oral route, these transgenic plant tissues may mobilize the protective humoral and mucosal immune responses to challenge the natural infectious agent. When tobacco, carrot and rice plants were transformed with the truncated version of the HBV nucleocapsid gene expression construct, non-infective hepatitis B viral core particles were observed via electron microscopy. A second plant codon-optimised HBV expression construct was designed that included the extensin signal sequence for augmented HBV particle accumulation. Upon transformation of tobacco plants with the codon-optimised construct, over 4 times more transgenic plants with high levels of expression of the HBV nucleocapsid protein were generated in comparison with a similar vector containing the unmodified wild-type HBV gene codon sequence. Further analysis via Western blotting confirmed the presence of the viral antigen in the total protein extracts from transgenic tobacco leaves and seeds. Electron microscopy showed that the expressed protein self-assembled into viral-like particles of 25–30 nm in diameter. To develop an edible subunit vaccine in plant seeds, a third plant transformation construct was used for the synthesis of the human cytomegalovirus glycoprotein B (HCMV gB) subunit. The gB protein derived from tobacco seeds retained critical structural features including epitopes for neutralizing antibodies and was targeted to the protein storage vesicles of tobacco seed endosperm. Two different strains of mice were orally immunized with tobacco seeds containing low concentrations of HCMV gB, with varying dosages, but without adjuvant. No anti-gB response was detected in intestinal or serum samples. However, a systemic immune response to normal tobacco seed proteins was observed in both strains of mice. While higher expression levels of antigens in seeds must be achieved, seeds may provide an effective and immunostimulatory vehicle for delivering edible vaccines to the intestinal mucosa. One of the outstanding challenges includes defining optimum conditions of antigen presentation, dosage and immunization schedules that will induce strong mucosal and/or systemic immune responses in heterogeneous populations. Here we review the different strategies being employed to produce specific oral antigens in plant tissues.  相似文献   
45.
The N-terminal domain of the hepatitis C virus (HCV) polyprotein containing the NS3 protease (residues 1027 to 1206) was expressed in Escherichia coli as a soluble protein under the control of the T7 promoter. The enzyme has been purified to homogeneity with cation exchange (SP-Sepharose HR) and heparin affinity chromatography in the absence of any detergent. The purified enzyme preparation was soluble and remained stable in solution for several weeks at 4 degrees C. The proteolytic activity of the purified enzyme was examined, also in the absence of detergents, using a peptide mimicking the NS4A/4B cleavage site of the HCV polyprotein. Hydrolysis of this substrate at the expected Cys-Ala scissile bond was catalyzed by the recombinant protease with a pseudo second-order rate constant (k(cat)/K(M)) of 205 and 196,000 M(-1) s(-1), respectively, in the absence and presence of a central hydrophobic region (sequence represented by residues 21 to 34) of the NS4A protein. The rate constant in the presence of NS4A peptide cofactor was two orders of magnitude greater than reported previously for the NS3 protease domain. A significantly higher activity of the NS3 protease-NS4A cofactor complex was also observed with a substrate mimicking the NS4B/5A site (k(cat)/K(M) of 5180 +/- 670 M(-1) s(-1)). Finally, the optimal formation of a complex between the NS3 protease domain and the cofactor NS4A was critical for the high proteolytic activity observed.  相似文献   
46.
The need and opportunity to discover therapeutics for rare or orphan diseases are enormous. Due to limited prevalence and/or commercial potential, of the approximately 6000 orphan diseases (defined by the FDA Orphan Drug Act as <200 000 US prevalence), only a small fraction (5%) is of interest to the biopharmaceutical industry. The fact that drug development is complicated, time-consuming and expensive with extremely low success rates only adds to the low rate of therapeutics available for orphan diseases. An alternative and efficient strategy to boost the discovery of orphan disease therapeutics is to find connections between an existing drug product and orphan disease. Drug Repositioning or Drug Repurposing--finding a new indication for a drug--is one way to maximize the potential of a drug. The advantages of this approach are manifold, but rational drug repositioning for orphan diseases is not trivial and poses several formidable challenges--pharmacologically and computationally. Most of the repositioned drugs currently in the market are the result of serendipity. One reason the connection between drug candidates and their potential new applications are not identified in an earlier or more systematic fashion is that the underlying mechanism 'connecting' them is either very intricate and unknown or indirect or dispersed and buried in an ever-increasing sea of information, much of which is emerging only recently and therefore is not well organized. In this study, we will review some of these issues and the current methodologies adopted or proposed to overcome them and translate chemical and biological discoveries into safe and effective orphan disease therapeutics.  相似文献   
47.
48.
The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH between 7.5 and 8.5, and low ionic strength. C- and N-terminal deletion experiments defined a peptide spanning from the P6 to the P4' residue as a suitable substrate. Cleavage kinetics were subsequently measured by using decamer P6-P4' peptides corresponding to all intermolecular cleavage sites of the HCV polyprotein. The following order of cleavage efficiency, in terms of kcat/Km, was determined: NS5A-NS5B > NS4A-NS4B >> NS4B-NS5A. A 14-mer peptide containing residues 21 to 34 of the protease cofactor NS4A (Pep4A 21-34), when added in stoichiometric amounts, was shown to increase cleavage rates of all peptides, the largest effect (100-fold) being observed on the hydrolysis of the NS4B-NS5A decamer. From the kinetic analysis of cleavage data, we conclude that (i) primary structure is an important determinant of the efficiency with which each site is cleaved during polyprotein processing, (ii) slow cleavage of the NS4B-NS5A site in the absence of NS4A is due to low binding affinity of the enzyme for this site, and (iii) formation of a 1:1 complex between the protease and Pep4A 21-34 is sufficient and required for maximum activation.  相似文献   
49.
The responses of hepatic delta-aminolaevulinate synthase and microsomal haem oxygenase to inducers were examined in pregnant rats. 2-Allyl-2-isopropylacetamide-mediated induction of delta-aminolaevulinate synthase was greatly decreased during pregnancy and in the early post-partum period. Administration of allylisopropylacetamide to pseudopregnant rats induced delta-aminolaevulinate synthase normally. Treatment of pregnant rats with cortisol failed to restore the drug-mediated induction of delta-aminolaevulinate synthase. Microsomal cytochrome P-450 content and the activities of drug-metabolizing enzymes such as aniline hydroxylase and ethylmorphine. N-demethylase were significantly lowered during pregnancy. In contrast with the greatly impaired induction of delta-aminolaevulinate synthase, the induction of haem oxygenase in response to CoCl2 remained unaltered in pregnant rats. The normal perturbations of delta-aminolaevulinate synthase, consisting of an initial inhibition followed by a rebound increase in the enzyme activity associated with CoCL2 treatment, were observed during pregnancy. These findings indicate that hormones and metabolic factors associated with gestation exert significant but differential controls on the induction patterns of delta-aminolaevulinate synthase and haem oxygenase.  相似文献   
50.
Complete amino acid sequence of yeast thioltransferase (glutaredoxin)   总被引:3,自引:0,他引:3  
The amino acid sequence of a thioltransferase isolated from Saccharomyces cerevisiae was determined. The protein was cleaved by trypsin, Staphylococcus aureus V8 protease, and cyanogen bromide. The peptides generated were purified by reverse phase HPLC. Sequencing of intact protein and its fragments were achieved by automated Edman degradation. The protein contains 106 amino acid residues with two cysteines. Yeast thioltransferase showed 51% structural similarity to pig liver thioltransferase and 34% to E. coli glutaredoxin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号