首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   14篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   12篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   13篇
  2006年   17篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   13篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1970年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
81.
DNA polymerase ε (pol ε) is believed to be the leading strand replicase in eukaryotes whereas pols λ and β are thought to be mainly involved in re-synthesis steps of DNA repair. DNA elongation by the human pol ε is halted by an abasic site (apurinic/apyrimidinic (AP) site). We have previously reported that human pols λ, β and η can perform translesion synthesis (TLS) of an AP site in the presence of pol ε. In the case of pol λ and β, this TLS requires the presence of a gap downstream from the product synthetized by the ε replicase. However, since these studies were conducted exclusively with a linear DNA template, we decided to test whether the structure of the template could influence the capacity of the pols ε, λ, β and η to perform TLS of an AP site. Therefore, we have investigated the replication of damaged “minicircle” DNA templates. In addition, replication of circular DNA requires, beyond DNA pols, the processivity clamp PCNA, the clamp loader replication factor C (RFC), and the accessory proteins replication protein A (RPA). Finally we have compared the capacity of unmodified versus monoubiquitinated PCNA in sustaining TLS by pols λ and η on a circular template. Our results indicate that in vitro gap-directed TLS synthesis by pols λ and β in the presence of pol ε, RPA and PCNA is unaffected by the structure of the DNA template. Moreover, monoubiquitination of PCNA does not affect TLS by pol λ while it appears to slightly stimulate TLS by pol η.  相似文献   
82.
For decades it was believed that direct and indirect heating (the latter of which elevates blood and core temperatures without directly heating the area being evaluated) increases skin but not skeletal muscle blood flow. Recent results, however, suggest that passive heating of the leg may increase muscle blood flow. Using the technique of positron-emission tomography, the present study tested the hypothesis that both direct and indirect heating increases muscle blood flow. Calf muscle and skin blood flows were evaluated from eight subjects during normothermic baseline, during local heating of the right calf [only the right calf was exposed to the heating source (water-perfused suit)], and during indirect whole body heat stress in which the left calf was not exposed to the heating source. Local heating increased intramuscular temperature of the right calf from 33.4 ± 1.0°C to 37.4 ± 0.8°C, without changing intestinal temperature. This stimulus increased muscle blood flow from 1.4 ± 0.5 to 2.3 ± 1.2 ml·100 g?1·min?1 (P < 0.05), whereas skin blood flow under the heating source increased from 0.7 ± 0.3 to 5.5 ± 1.5 ml·100 g?1·min?1 (P < 0.01). While whole body heat stress increased intestinal temperature by ~1°C, muscle blood flow in the calf that was not directly exposed to the water-perfused suit (i.e., indirect heating) did not increase during the whole body heat stress (normothermia: 1.6 ± 0.5 ml·100 g?1·min?1; heat stress: 1.7 ± 0.3 ml·100 g?1·min?1; P = 0.87). Whole body heating, however, reflexively increased calf skin blood flow (to 4.0 ± 1.5 ml·100 g?1·min?1) in the area not exposed to the water-perfused suit. These data show that local, but not indirect, heating increases calf skeletal muscle blood flow in humans. These results have important implications toward the reconsideration of previously accepted blood flow distribution during whole body heat stress.  相似文献   
83.
84.
85.
86.
Regulation of subcutaneous adipose tissue blood flow (ATBF) remains poorly elucidated in humans, especially during exercise. In the present study we tested the role of adenosine in the regulation of ATBF adjacent to active and inactive thigh muscles during intermittent isometric knee-extension exercise (1 s contraction followed by 2 s rest with workloads of 50, 100, and 150 N) in six healthy young women. ATBF was measured using positron emission tomography (PET) without and with unspecific adenosine receptor inhibitor theophylline infused intravenously. Adipose regions were localized from fused PET and magnetic resonance images. Blood flow in subcutaneous adipose tissue adjacent to active muscle increased from rest (1.0 ± 0.3 ml·100 g(-1)·min(-1)) to exercise (P < 0.001) and along with increasing exercise intensity (50 N = 4.1 ± 1.4, 100 N = 5.4 ± 1.8, and 150 N = 6.9 ± 3.0 ml·100 g(-1)·min(-1), P = 0.03 for the increase). In contrast, ATBF adjacent to inactive muscle remained at resting levels with all intensities (~1.0 ± 0.5 ml·100 g(-1)·min(-1)). During exercise theophylline prevented the increase in ATBF adjacent to active muscle especially during the highest exercise intensity (50 N = 4.3 ± 1.8 ml·100 g(-1)·min(-1), 100 N = 4.0 ± 1.5 ml·100 g(-1)·min(-1), and 150 N = 4.9 ± 1.8 ml·100 g(-1)·min(-1), P = 0.06 for an overall effect) but had no effect on blood flow adjacent to inactive muscle or adipose blood flow in resting contralateral leg. In conclusion, we report in the present study that 1) blood flow in subcutaneous adipose tissue of the leg is increased from rest to exercise in an exercise intensity-dependent manner, but only in the vicinity of working muscle, and 2) adenosine receptor antagonism attenuates this blood flow enhancement at the highest exercise intensities.  相似文献   
87.
Lipolysis may regulate liver free fatty acid (FFA) uptake and triglyceride accumulation; both are potential causes of insulin resistance and liver damage. We evaluated whether 1) systemic FFA release is the major determinant of liver FFA uptake in fasting humans in vivo and 2) the beneficial metabolic effects of FFA lowering can be explained by a reduction in liver triglyceride content. Sixteen healthy subjects were subdivided in two groups of similar characteristics to undergo positron emission tomography with [(11)C]acetate and [(11)C]palmitate to quantify liver FFA metabolism (n = 8), or magnetic resonance spectroscopy (MRS) to measure hepatic fat content (n = 8), before and after the acute lowering of circulating FFAs by using the antilipolytic agent acipimox. MRS was again repeated after a 1-wk treatment period. Acipimox suppressed FFA levels while stimulating hepatic fractional extraction of FFAs (P < 0.05). As a result, fasting liver FFA uptake was decreased by 79% (P = 0.0002) in tight association with lipolysis (r = 0.996, P < 0.0001). The 1-wk treatment induced a significant improvement in systemic (+30%) and liver (+70%) insulin sensitivity (P < 0.05) and decreased circulating triglycerides (-20%, P = 0.06) and liver enzymes (ALT -20%, P = 0.03). No change in liver fat content was observed after either acute or sustained FFA suppression. We conclude that acute and sustained inhibitions of lipolysis and liver FFA uptake fail to deplete liver fat in healthy human subjects. Liver FFA uptake was decreased in proportion to FFA delivery. As a consequence, liver and systemic insulin sensitivity were improved, together with liver function, independently of changes in hepatic triglyceride accumulation.  相似文献   
88.
Ungulate grazing and trampling strongly affect pastures and ecosystems throughout the world. Ecological population models are used for studying these systems and determining the guidelines for sustainable and economically viable management. However, the effect of trampling and other resource wastage is either not taken into account or quantified with data in earlier models. Also, the ability of models to describe the herbivore impact on pastures is usually not validated. We used a detailed model and data to study the level of winter‐ and summertime lichen wastage by reindeer and the effects of wastage on population sizes and management. We also validated the model with respect to its ability of predicting changes in lichen biomass and compared the actual management in herding districts with model results. The modeling efficiency value (0.75) and visual comparison between the model predictions and data showed that the model was able to describe the changes in lichen pastures caused by reindeer grazing and trampling. At the current lichen biomass levels in the northernmost Finland, the lichen wastage varied from 0 to 1 times the lichen intake during winter and from 6 to 10 times the intake during summer. With a higher value for wastage, reindeer numbers and net revenues were lower in the economically optimal solutions. Higher wastage also favored the use of supplementary feeding in the optimal steady state. Actual reindeer numbers in the districts were higher than in the optimal steady‐state solutions for the model in 18 herding districts out of 20. Synthesis and applications. We show that a complex model can be used for analyzing ungulate‐pasture dynamics and sustainable management if the model is parameterized and validated for the system. Wastage levels caused by trampling and other causes should be quantified with data as they strongly affect the results and management recommendations. Summertime lichen wastage caused by reindeer is higher than expected, which suggests that seasonal pasture rotation should be used to prevent the heavy trampling of winter lichen pastures during summer. In the present situation, reindeer numbers in northernmost Finland are in most cases higher than in the management solutions given by the model.  相似文献   
89.
90.

Background

Cattle twins are well known as blood chimeras. However, chimerism in the actual hematopoietic progenitor compartment has not been directly investigated. Here, we analyzed fetal liver of chimeric freemartin cattle by combining a new anti-bovine CD34 antibody and Y-chromosome specific in situ hybridization.

Results

Bull-derived CD34+ cells were detected in the liver of the female sibling (freemartin) at 60 days gestation. The level of bull-derived CD34+ cells was lower in the freemartin than in its male siblings. Bull (Y+) and cow hematopoietic cells often occurred in separate clusters. Around clusters of Y+CD34+ cells, Y+CD34- cells were typically observed. The thymi were also strongly chimeric at 60 days of gestation.

Conclusion

The fetal freemartin liver contains clusters of bull-derived hematopoietic progenitors, suggesting clonal expansion and differentiation. Even the roots of the hematopoietic system in cattle twins are thus strongly chimeric from the early stages of fetal development. However, the hematopoietic seeding of fetal liver apparently started already before the onset of functional vascular anastomosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号