首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6362篇
  免费   418篇
  国内免费   1篇
  2023年   56篇
  2022年   96篇
  2021年   223篇
  2020年   175篇
  2019年   185篇
  2018年   231篇
  2017年   219篇
  2016年   294篇
  2015年   362篇
  2014年   411篇
  2013年   500篇
  2012年   489篇
  2011年   416篇
  2010年   274篇
  2009年   250篇
  2008年   340篇
  2007年   291篇
  2006年   277篇
  2005年   238篇
  2004年   227篇
  2003年   156篇
  2002年   164篇
  2001年   98篇
  2000年   96篇
  1999年   81篇
  1998年   52篇
  1997年   36篇
  1996年   27篇
  1995年   40篇
  1994年   18篇
  1993年   23篇
  1992年   40篇
  1991年   29篇
  1990年   23篇
  1989年   22篇
  1988年   33篇
  1987年   28篇
  1986年   20篇
  1985年   23篇
  1984年   25篇
  1983年   20篇
  1982年   18篇
  1980年   12篇
  1977年   8篇
  1976年   9篇
  1975年   10篇
  1974年   11篇
  1973年   10篇
  1972年   9篇
  1971年   9篇
排序方式: 共有6781条查询结果,搜索用时 15 毫秒
91.
Esophageal squamous cell carcinoma (ESCC), the most frequent esophageal cancer (EC) subtype, entails dismal prognosis. Hypoxia, a common feature of advanced ESCC, is involved in resistance to radiotherapy (RT). RT response in hypoxia might be modulated through epigenetic mechanisms, constituting novel targets to improve patient outcome. Post-translational methylation in histone can be partially modulated by histone lysine demethylases (KDMs), which specifically removes methyl groups in certain lysine residues. KDMs deregulation was associated with tumor aggressiveness and therapy failure. Thus, we sought to unveil the role of Jumonji C domain histone lysine demethylases (JmjC-KDMs) in ESCC radioresistance acquisition. The effectiveness of RT upon ESCC cells under hypoxic conditions was assessed by colony formation assay. KDM3A/KDM6B expression, and respective H3K9me2 and H3K27me3 target marks, were evaluated by RT-qPCR, Western blot, and immunofluorescence. Effect of JmjC-KDM inhibitor IOX1, as well as KDM3A knockdown, in in vitro functional cell behavior and RT response was assessed in ESCC under hypoxic conditions. In vivo effect of combined IOX1 and ionizing radiation treatment was evaluated in ESCC cells using CAM assay. KDM3A, KDM6B, HIF-1α, and CAIX immunoexpression was assessed in primary ESCC and normal esophagus. Herein, we found that hypoxia promoted ESCC radioresistance through increased KDM3A/KDM6B expression, enhancing cell survival and migration and decreasing DNA damage and apoptosis, in vitro. Exposure to IOX1 reverted these features, increasing ESCC radiosensitivity and decreasing ESCC microtumors size, in vivo. KDM3A was upregulated in ESCC tissues compared to the normal esophagus, associating and colocalizing with hypoxic markers (HIF-1α and CAIX). Therefore, KDM3A upregulation in ESCC cell lines and primary tumors associated with hypoxia, playing a critical role in EC aggressiveness and radioresistance. KDM3A targeting, concomitant with conventional RT, constitutes a promising strategy to improve ESCC patients’ survival.Subject terms: Predictive markers, Cancer  相似文献   
92.
Desulfovibrio species are Gram-negative anaerobic sulfate-reducing bacteria that colonize the human gut. Recently, Desulfovibrio spp. have been implicated in gastrointestinal diseases and shown to stimulate the epithelial immune response, leading to increased production of inflammatory cytokines by macrophages. Activated macrophages are key cells of the immune system that impose nitrosative stress during phagocytosis. Hence, we have analyzed the in vitro and in vivo responses of Desulfovibrio vulgaris Hildenborough to nitric oxide (NO) and the role of the hybrid cluster proteins (HCP1 and HCP2) and rubredoxin oxygen oxidoreductases (ROO1 and ROO2) in NO protection. Among the four genes, hcp2 was the gene most highly induced by NO, and the hcp2 transposon mutant exhibited the lowest viability under conditions of NO stress. Studies in murine macrophages revealed that D. vulgaris survives incubation with these phagocytes and triggers NO production at levels similar to those stimulated by the cytokine gamma interferon (IFN-γ). Furthermore, D. vulgaris hcp and roo mutants exhibited reduced viability when incubated with macrophages, revealing that these gene products contribute to the survival of D. vulgaris during macrophage infection.  相似文献   
93.
Retinoids (vitamin A and derivatives) are recognized as essential factors for central nervous system (CNS) development. Retinol (vitamin A) also was postulated to be a major antioxidant component of diet as it modulates reactive species (RS) production and oxidative stress in biological systems. Oxidative stress plays a major role either in pathogenesis or development of neurodegenerative diseases, or even in both. Here we investigate the role of retinol supplementation to human neuron-derived SH-SY5Y cells over RS production and biochemical markers associated to neurodegenerative diseases expressed at neuronal level in Parkinson’s disease and Alzheimer’s disease: α-synuclein, β-amyloid peptide, tau phosphorylation and RAGE. Retinol treatment (24 h) impaired cell viability and increased intracellular RS production at the highest concentrations (7 up to 20 µM). Antioxidant co-treatment (Trolox 100 µM) rescued cell viability and inhibited RS production. Furthermore, retinol (10 µM) increased the levels of α-synuclein, tau phosphorylation at Ser396, β-amyloid peptide and RAGE. Co-treatment with antioxidant Trolox inhibited the increased in RAGE, but not the effect of retinol on α-synuclein, tau phosphorylation and β-amyloid peptide accumulation. These data indicate that increased availability of retinol to neurons at levels above the cellular physiological concentrations may induce deleterious effects through diverse mechanisms, which include oxidative stress but also include RS-independent modulation of proteins associated to progression of neuronal cell death during the course of neurodegenerative diseases.  相似文献   
94.
The active site of tyrosinase is described with a view to depicting its interactions with substrates and inhibitors. Occurrence and mechanism(s) of tyrosinase-mediated browning of agrofood products are reviewed, with regard to both enzymic and chemical reactions, and their control, modulation, and inhibition. Technical and applicational implications are discussed.  相似文献   
95.
96.
Cholecalciferol administration to vitamin D-deficient chicks produces, 24 h after treatment, a specific increase of the phosphatidylcholine content in the intestinal mitochondrial inner membrane plus matrix fraction without changes in its proportion in the outer membrane. The ratio of unsaturated/saturated fatty acids in the outer membrane phosphatidylcholine was increased by that treatment. The inner membrane plus matrix presents a decrease of 16:1 in phosphatidylethanolamine and 18:0 in the phosphatidylcholine fraction. Cardiolipin shows the largest change in the ratio of unsaturated/saturated fatty acids predominantly by an increase in the linoleic acid. The present data suggest that phosphatidylcholine and fatty acids modifications in both mitochondrial subfractions caused by vitamin D3 might have some role in the intestinal mitochondrial Ca transport.  相似文献   
97.
Fingerprints of South American monkeys of the genera Alouatta, Ateles and Cebus were studied. Dermatoglyphics were analysed in relation to pattern intensities; the distribution of symmetric and asymmetric designs was also determined. Results have been related to some aspects of the contribution of dermatoglyphics to the study of Primate morphological evolution.  相似文献   
98.
E-cadherin protein (CDH1 gene) integrity is fundamental to the process of epithelial polarization and differentiation. Deregulation of the E-cadherin function plays a crucial role in breast cancer metastases, with worse prognosis and shorter overall survival. In this narrative review, we describe the inactivating mechanisms underlying CDH1 gene activity and its possible translation to clinical practice as a prognostic biomarker and as a potential targeted therapy.  相似文献   
99.
Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α‐amyrin, 1‐dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p‐coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1‐dehydrodiosgenone, tricin, and p‐coumaric acid are also reported, and p‐coumaric acid and 1‐dehydrodiosgenone were active against B. pilosa.  相似文献   
100.
Extremophiles - We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号