首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   954篇
  免费   84篇
  国内免费   1篇
  1039篇
  2023年   2篇
  2022年   8篇
  2021年   16篇
  2020年   15篇
  2019年   17篇
  2018年   15篇
  2017年   17篇
  2016年   32篇
  2015年   44篇
  2014年   56篇
  2013年   56篇
  2012年   73篇
  2011年   74篇
  2010年   51篇
  2009年   52篇
  2008年   56篇
  2007年   57篇
  2006年   46篇
  2005年   58篇
  2004年   59篇
  2003年   51篇
  2002年   65篇
  2001年   16篇
  2000年   17篇
  1999年   4篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
排序方式: 共有1039条查询结果,搜索用时 46 毫秒
161.
The lesser white-fronted goose is a sub-Arctic species with a currently fragmented breeding range, which extends from Fennoscandia to easternmost Siberia. The population started to decline at the beginning of the last century and, with a current world population estimate of 25,000 individuals, it is the most threatened of the Palearctic goose species. Of these, only 30–50 pairs breed in Fennoscandia. A fragment of the control region of mtDNA was sequenced from 110 individuals from four breeding, one staging and two wintering areas to study geographic subdivisions and gene flow. Sequences defined 15 mtDNA haplotypes that were assigned to two mtDNA lineages. Both the mtDNA lineages were found from all sampled localities indicating a common ancestry and/or some level of gene flow. Analyses of molecular variance showed significant structuring among populations ( ST 0.220, P < 0.001). The results presented here together with ecological data indicate that the lesser white-fronted goose is fragmented into three distinctive subpopulations, and thus, the conservation status of the species should be reconsidered.  相似文献   
162.
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.  相似文献   
163.
164.
1. Several G-protein-coupled receptors (GPCRs) have been localized to various layers of the vertebrate retina, using autoradiographic and immunohistochemical techniques, but the functional data concerning G protein activation are limited. Here, we establish optimized assay conditions to detect receptor-dependent G protein activity in membranes and tissue sections of the rat retina. 2. Agonist-stimulated [35S]GTPgammaS-binding responses were characterized for the Gi/o-linked adenosine A1, cannabinoid CB1, m2/m4 muscarinic acetylcholine, and GABA(B) receptors. Initial assumption was that G protein activity under "basal conditions" is high due to enrichment and activity of rhodopsin and transducin in this tissue. 3. We found that pretreatment of retina membranes with hydroxylamine (10 mM), a rhodopsin-inactivating drug, substantially (up to 60%) reduced basal G protein activity, thereby improving signal-to-noise ratio to detect agonist-stimulated G protein activation for all studied receptors. [35S]GTPgammaS autoradiography revealed that hydroxylamine specifically reduced basal binding in the transducin-enriched photoreceptor layer. In contrast, hydroxylamine did not affect GPCR signaling in brain membranes, indicating specific action on retinal transducin. 4. For all studied receptors, [35S]GTPgammaS autoradiography allowed localization of G protein activity to different retinal layers, with the bulk of signal detected in the ganglion cell layer. Strongest responses were observed for adenosine and muscarinic receptor agonists. Additional G protein activity was detected in the inner plexiform layer. 5. Responses to all tested agonists were reversed in the presence of appropriate receptor-selective antagonists, indicating receptor-mediated G protein activation.  相似文献   
165.
166.
167.
168.
169.
The vegetation of semi-natural grasslands under modern, cereal/forage cropping in Finnish Karelia (n = 11) and old fashioned animal husbandry in adjacent Russian Karelia (n = 11) was compared in terms of their species composition. Each grassland site was paired with one in the other country which was as similar as possible in respect to its natural conditions. The species composition indicated differences in management between the two countries. The mean number of species was 4S.S in the Finnish sites and 52.6 in the Russian sites. A total of 12 species exhibited a statistical difference in their indicator values between the two countries. Traditional grassland species (e.g. Leontodon hispidus, Dianthus deltoides ), indicating grazing, hay making and old settlement, occurred more oñen in Russian sites, while species related to nutrient enrichment and cultivation (e.g. Urtica dioica, Elymus repens ) were more characteristic of Finnish sites.  相似文献   
170.
The putative specific interaction and complex formation by sphingomyelin and cholesterol was investigated. Accordingly, low contents (1 mol % each) of fluorescently labeled derivatives of these lipids, namely 1-palmitoyl-2[10-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PyrPC), n-[10-(1-pyrenyl)decanoyl]sphingomyelin (PyrSM), and increasing concentrations of cholesterol (up to 5 mol %), were included in large unilamellar vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-dinervonoyl-sn-glycero-3-phosphocholine (DNPC), and the excimer/monomer fluorescence emission ratio (I(e)/I(m)) was measured. In DNPC below the main phase transition, the addition of up to 5 mol % cholesterol reduced I(e)/I(m) significantly. Except for this, cholesterol had only a negligible effect in both matrices and for both probes. We then compared the efficiency of resonance energy transfer from PyrPC and PyrSM to 22-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBDchol). An augmenting colocalization of the latter resonance energy transfer pair with temperature was observed in a DMPC matrix below the main phase transition. In contrast, compared to PyrSM the colocalization of PyrPC with NBDchol was more efficient in the longer DNPC matrix. These results could be confirmed using 5,6-dibromo-cholestan-3beta-ol as a collisional quencher for the pyrene-labeled lipids. The results indicate lack of a specific interaction between sphingomyelin and cholesterol, and further imply that hydrophobic mismatch between the lipid constituents could provide the driving force for the cosegregation of sphingomyelin and cholesterol in fluid phospholipid bilayers of thicknesses comparable to those found for biomembranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号