首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   10篇
  国内免费   1篇
  85篇
  2023年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
1.
2.
The upstream stimulatory factor 2 (USF2) is a regulator of important cellular processes and is supposed to have also a role during tumor development. However, the knowledge about the mechanisms that control the function of USF2 is limited. The data of the current study show that USF2 function is regulated by phosphorylation and identified GSK3β as an USF2-phosphorylating kinase. The phosphorylation sites within USF2 could be mapped to serine 155 and threonine 230. In silico analyses of the 3-dimensional structure revealed that phosphorylation of USF2 by GSK3β converts it to a more open conformation which may influence transactivity, DNA binding and target gene expression. Indeed, experiments with GSK-3β-deficient cells revealed that USF2 transactivity, DNA binding and target gene expression were reduced upon lack of GSK3β. Further, experiments with USF2 variants mimicking GSK3β phosphorylated USF2 in GSK3β-deficient cells showed that phosphorylation of USF2 by GSK3β did not affect cell proliferation but increased cell migration. Together, this study reports a new mechanism by which USF2 may contribute to cancerogenesis.  相似文献   
3.
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   
4.
Abstract

A class of very potent nucleoside transport inhibitors is present in two molecular forms around physiological pH. We investigated whether the monoprotonated or the unionized species of these molecules binds to this camer protein with higher affinity.  相似文献   
5.
The study investigates the effects of the 11+ and HarmoKnee injury prevention programmes on knee strength in male soccer players. Under-21-year-old players (n=36) were divided equally into: the 11+, HarmoKnee and control groups. The programmes were performed for 24 sessions (20-25 min each). The hamstrings and quadriceps strength were measured bilaterally at 60°·s-1, 180°·s-1 and 300°·s-1. The concentric quadriceps peak torque (PT) of the 11+ increased by 27.7% at 300°·s-1 in the dominant leg (p<0.05). The concentric quadriceps PT of HarmoKnee increased by 36.6%, 36.2% and 28% in the dominant leg, and by 31.3%, 31.7% and 20.05% at 60°·s-1, 180°·s-1 and 300°·s-1 in the non-dominant leg respectively. In the 11+ group the concentric hamstring PT increased by 22%, 21.4% and 22.1% at 60°·s-1, 180°·s-1 and 300°·s-1, respectively in the dominant leg, and by 22.3%, and 15.7% at 60°·s-1 and 180°·s-1, in the non-dominant leg. In the HarmoKnee group the hamstrings in the dominant leg showed an increase in PT by 32.5%, 31.3% and 14.3% at 60°·s-1, 180°·s-1 and 300°·s-1, and in the non-dominant leg hamstrings PT increased by 21.1% and 19.3% at 60°·s-1 and 180°·s-1 respectively. The concentric hamstrings strength was significantly different between the 11+ and control groups in the dominant (p=0.01) and non-dominant legs (p=0.02). The HarmoKnee programme enhanced the concentric strength of quadriceps. The 11+ and HarmoKnee programmes are useful warm-up protocols for improving concentric hamstring strength in young professional male soccer players. The 11+ programme is more advantageous for its greater concentric hamstring strength improvement compared to the HarmoKnee programme.  相似文献   
6.
Two carbohydrate binding modules (DD1 and DD2) belonging to CBM32 are located at the C terminus of a chitosanase from Paenibacillus sp. IK-5. We produced three proteins, DD1, DD2, and tandem DD1/DD2 (DD1+DD2), and characterized their binding ability. Transition temperature of thermal unfolding (Tm) of each protein was elevated by the addition of cello-, laminari-, chitin-, or chitosan-hexamer (GlcN)6. The Tm elevation (ΔTm) in DD1 was the highest (10.3 °C) upon the addition of (GlcN)6 and was markedly higher than that in DD2 (1.0 °C). A synergistic effect was observed (ΔTm = 13.6 °C), when (GlcN)6 was added to DD1+DD2. From isothermal titration calorimetry experiments, affinities to DD1 were not clearly dependent upon chain length of (GlcN)n; ΔGr° values were −7.8 (n = 6), −7.6 (n = 5), −7.6 (n = 4), −7.6 (n = 3), and −7.1 (n = 2) kcal/mol, and the value was not obtained for GlcN due to the lowest affinity. DD2 bound (GlcN)n with the lower affinities (ΔGr° = −5.0 (n = 3) ∼ −5.2 (n = 6) kcal/mol). Isothermal titration calorimetry profiles obtained for DD1+DD2 exhibited a better fit when the two-site model was used for analysis and provided greater affinities to (GlcN)6 for individual DD1 and DD2 sites (ΔGr° = −8.6 and −6.4 kcal/mol, respectively). From NMR titration experiments, (GlcN)n (n = 2∼6) were found to bind to loops extruded from the core β-sandwich of individual DD1 and DD2, and the interaction sites were similar to each other. Taken together, DD1+DD2 is specific to chitosan, and individual modules synergistically interact with at least two GlcN units, facilitating chitosan hydrolysis.  相似文献   
7.
A total of six different structural alignment tools (TM‐Align, TriangleMatch, CLICK, ProBis, SiteEngine and GA‐SI) were assessed for their ability to perform two particular tasks: (i) discriminating FAD (flavin adenine dinucleotide) from non‐FAD binding sites, and (ii) performing an all‐to‐all comparison on a set of 883 FAD binding sites for the purpose of classifying them. For the first task, the consistency of each alignment method was evaluated, showing that every method is able to distinguish FAD and non‐FAD binding sites with a high Matthews correlation coefficient. Additionally, GA‐SI was found to provide alignments different from those of the other approaches. The results obtained for the second task revealed more significant differences among alignment methods, as reflected in the poor correlation of their results and highlighted clearly by the independent evaluation of the structural superimpositions generated by each method. The classification itself was performed using the combined results of all methods, using the best result found for each comparison of binding sites. A number of different clustering methods (Single‐linkage, UPGMA, Complete‐linkage, SPICKER and k‐Means clustering) were also used. The groups of similar binding sites (proteins) or clusters generated by the best performing method were further analyzed in terms of local sequence identity, local structural similarity and conservation of analogous contacts with the FAD ligands. Each of the clusters was characterized by a unique set of structural features or patterns, demonstrating that the groups generated truly reflect the structural diversity of FAD binding sites. Proteins 2016; 84:1728–1747. © 2016 Wiley Periodicals, Inc.  相似文献   
8.
本文报告了本实验室设计的由血红细胞自溶液60℃热变性, 乙醇——氯仿法除血红蛋白,旋转蒸发法减压浓缩抽去氯仿、乙醇,硫酸铵分级盐析法沉降SOD,Sepbadex G-75层析提纯SOD等步骤构成的一条成本低、设计合理、简便实用的分离纯化SOD的工艺路线。  相似文献   
9.
QM and QM/MM energy calculations have been carried out on an atomic resolution structure of liganded triosephosphate isomerase (TIM) that has an active site proline (Pro168) in a planar conformation. The origin of the planarity of this proline has been identified. Steric interactions between the atoms of the proline ring and a tyrosine ring (Tyr166) on one side of the proline prevent the ring from adopting the up pucker (chi1 is approximately -30 degrees), while the side chain of a nearby alanine (Ala171) forbids the down pucker (chi1 is approximately +30 degrees). To obtain a proline conformation that is in agreement with the experimentally observed planar state, a quantum system of sufficient size is required and should at least include the nearby side chains of Tyr166, Ala171, and Glu129 to provide enough stabilization. It is argued that the current force fields for structure optimization do not describe strained protein fragments correctly. The proline is part of a catalytic loop that closes upon ligand binding. Comparison of the proline conformation in different TIM X-ray structures, indicates that in the closed conformation of TIM the proline is planar or nearly planar, while in the open conformation it is down puckered. This suggests that the planarity possibly plays a role in the overall catalytic cycle of TIM, presumable acting as a reservoir of energy that becomes available upon loop opening.  相似文献   
10.
In the study of the structure and function relationship of human MFE-2, we have investigated the dynamics of human MFE-2SCP-2L (hSCP-2L) and its response to ligand removal. A comparison was made with homologous rabbit SCP-2. Breathing and a closing motion are found, identifiable with an adjustment in size and a closing off of the binding pocket. Crucial residues for structural integrity have been identified. Particularly mobile areas of the protein are loop 1 that is connecting helices A and C in space, and helix D, next to the entrance of the pocket. In hSCP-2L, the binding pocket gets occupied by Phe93, which is making a tight hydrophobic contact with Trp36. In addition, it is found that the C-terminal peroxisomal targeting signal (PTS1) that is solvent exposed in the complexed structure becomes buried when no ligand is present. Moreover, an anti-correlation exists between burial of PTS1 and the size of the binding pocket. The results are in accordance with plant nsLTPs, where a similar accommodation of binding pocket size was found after ligand binding/removal. Furthermore, the calculations support the suggestion of a ligand-assisted targeting mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号