首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7212篇
  免费   532篇
  国内免费   2篇
  2021年   38篇
  2020年   38篇
  2019年   37篇
  2018年   91篇
  2017年   107篇
  2016年   155篇
  2015年   253篇
  2014年   315篇
  2013年   335篇
  2012年   451篇
  2011年   478篇
  2010年   293篇
  2009年   205篇
  2008年   362篇
  2007年   341篇
  2006年   330篇
  2005年   347篇
  2004年   288篇
  2003年   244篇
  2002年   257篇
  2001年   210篇
  2000年   267篇
  1999年   177篇
  1998年   74篇
  1997年   55篇
  1996年   64篇
  1995年   49篇
  1994年   55篇
  1993年   44篇
  1992年   117篇
  1991年   122篇
  1990年   118篇
  1989年   72篇
  1988年   104篇
  1987年   82篇
  1986年   77篇
  1985年   81篇
  1984年   77篇
  1983年   56篇
  1982年   56篇
  1981年   48篇
  1980年   37篇
  1979年   68篇
  1978年   39篇
  1977年   54篇
  1975年   48篇
  1973年   46篇
  1972年   37篇
  1971年   42篇
  1968年   35篇
排序方式: 共有7746条查询结果,搜索用时 781 毫秒
991.
Protein kinase CK2 is ubiquitously expressed. The holoenzyme is composed of two catalytic α- or α′-subunits and two regulatory β-subunits but evidence is accumulating that the subunits can function independently. The composition of the holoenzyme as well as the expression of the individual subunits varies in different tissues, with high expression of CK2α′ in testis and brain. CK2 phosphorylates a number of different substrates which are implicated in basal cellular processes such as proliferation and survival of cells. Here, we report a new substrate, KIF5C, which is a member of the kinesin 1 family of motor neuron proteins. Phosphorylation of KIF5C was demonstrated in vitro and in vivo. Using deletion mutants, a peptide library, and mutation analysis a phosphorylation site for CK2 was mapped to amino acid 338 which is located in the non-motor domain of KIF5C. Interestingly, KIF5C is phosphorylated by holoenzymes composed of CK2α/CK2β and CK2α′/CK2β as well as by CK2α′ alone but not by CK2α alone.  相似文献   
992.
In late larvae of the blowfly, Calliphora vicina, arylphorin and LSP-2 proteins, which belong to the class of hexamerins, are selectively taken up by the fat body from the haemolymph. Hexamerin endocytosis is mediated by a specific membrane-bound receptor, the arylphorin-binding protein (ABP). Using the two-hybrid technique, we found that the anterior fat body protein (AFP) interacts with the hexamerin receptor. AFP, a homologue of the mammalian calcium-binding liver protein regucalcin (senescence marker protein-30), exhibits a strong binding affinity for a naturally occurring C-terminal cleavage fragment of the hexamerin receptor precursor (the P30 peptide) and other receptor cleavage products that contain P30. Expression of AFP mRNA and protein is restricted to the anterior part of the fat body tissue and to haemocytes in last-instar larvae. AFP mRNA occurs in all postembryonic developmental stages. Our results suggest that AFP plays a role in the regulation of hexamerin uptake by fat body cells along the anterior-posterior axis.  相似文献   
993.
Geobacillus stearothermophilus NRS 2004/3a possesses an oblique surface layer (S-layer) composed of glycoprotein subunits as the outermost component of its cell wall. In addition to the elucidation of the complete S-layer glycan primary structure and the determination of the glycosylation sites, the structural gene sgsE encoding the S-layer protein was isolated by polymerase chain reaction-based techniques. The open reading frame codes for a protein of 903 amino acids, including a leader sequence of 30 amino acids. The mature S-layer protein has a calculated molecular mass of 93,684 Da and an isoelectric point of 6.1. Glycosylation of SgsE was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-beta-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->](n = 13-18), with a 2-O-methyl group capping the terminal trisaccharide repeating unit at the non-reducing end of the glycan chains. The glycan chains are bound via the disaccharide core -->3)-alpha-l-Rhap-(1-->3)-alpha-L-Rhap-(L--> and the linkage glycose beta-D-Galp in O-glycosidic linkages to the S-layer protein SgsE at positions threonine 620 and serine 794. This S-layer glycoprotein contains novel linkage regions and is the first one among eubacteria whose glycosylation sites have been characterized.  相似文献   
994.
The roles of invariant residues at the active site of transaldolase B from Escherichia coli have been probed by site-directed mutagenesis. The mutant enzymes D17A, N35A, E96A, T156A, and S176A were purified from a talB-deficient host and analyzed with respect to their 3D structure and kinetic behavior. X-ray analysis showed that side chain replacement did not induce unanticipated structural changes in the mutant enzymes. Three mutations, N35A, E96A, and T156A resulted mainly in an effect on apparent kcat, with little changes in apparent Km values for the substrates. Residues N35 and T156 are involved in the positioning of a catalytic water molecule at the active site and the side chain of E96 participates in concert with this water molecule in proton transfer during catalysis. Substitution of Ser176 by alanine resulted in a mutant enzyme with 2.5% residual activity. The apparent Km value for the donor substrate, fructose 6-phosphate, was increased nearly fivefold while the apparent Km value for the acceptor substrate, erythrose 4-phosphate remained unchanged, consistent with a function for S176 in the binding of the C1 hydroxyl group of the donor substrate. The mutant D17A showed a 300-fold decrease in kcat, and a fivefold increase in the apparent Km value for the acceptor substrate erythrose 4-phosphate, suggesting a role of this residue in carbon-carbon bond cleavage and stabilization of the carbanion/enamine intermediate.  相似文献   
995.
Mucosally active vaccine adjuvants that will prime a full range of local and systemic immune responses against defined antigenic epitopes are much needed. Cholera toxin and lipophilic immune stimulating complexes (ISCOMS) containing Quil A can both act as adjuvants for orally administered Ags, possibly by targeting different APCs. Recently, we have been successful in separating the adjuvant and toxic effects of cholera toxin by constructing a gene fusion protein, CTA1-DD, that combines the enzymatically active CTA1-subunit with a B cell-targeting moiety, D, derived from Staphylococcus aureus protein A. Here we have extended this work by combining CTA1-DD with ISCOMS, which normally target dendritic cells and/or macrophages. ISCOMS containing a fusion protein comprising the OVA(323-339) peptide epitope linked to CTA1-DD were highly immunogenic when given in nanogram doses by the s.c., oral, or nasal routes, inducing a wide range of T cell-dependent immune responses. In contrast, ISCOMS containing the enzymatically inactive CTA1-R7K-DD mutant protein were much less effective, indicating that at least part of the activity of the combined vector requires the ADP-ribosylating property of CTA1. No toxicity was observed by any route. To our knowledge, this is the first report on the successful combination of two mechanistically different principles of adjuvant action. We conclude that rationally designed vectors consisting of CTA1-DD and ISCOMS may provide a novel strategy for the generation of potent and safe mucosal vaccines.  相似文献   
996.
To investigate whether Cd induces common plant defense pathways or unspecific necrosis, the temporal sequence of physiological reactions, including hydrogen peroxide (H(2)O(2)) production, changes in ascorbate-glutathione-related antioxidant systems, secondary metabolism (peroxidases, phenolics, and lignification), and developmental changes, was characterized in roots of hydroponically grown Scots pine (Pinus sylvestris) seedlings. Cd (50 microM, 6 h) initially increased superoxide dismutase, inhibited the systems involved in H(2)O(2) removal (glutathione/glutathione reductase, catalase [CAT], and ascorbate peroxidase [APX]), and caused H(2)O(2) accumulation. Elongation of the roots was completely inhibited within 12 h. After 24 h, glutathione reductase activities recovered to control levels; APX and CAT were stimulated by factors of 5.5 and 1.5. Cell death was increased. After 48 h, nonspecific peroxidases and lignification were increased, and APX and CAT activities were decreased. Histochemical analysis showed that soluble phenolics accumulated in the cytosol of Cd-treated roots but lignification was confined to newly formed protoxylem elements, which were found in the region of the root tip that normally constitutes the elongation zone. Roots exposed to 5 microM Cd showed less pronounced responses and only a small decrease in the elongation rate. These results suggest that in cells challenged by Cd at concentrations exceeding the detoxification capacity, H(2)O(2) accumulated because of an imbalance of redox systems. This, in turn, may have triggered the developmental program leading to xylogenesis. In conclusion, Cd did not cause necrotic injury in root tips but appeared to expedite differentiation, thus leading to accelerated aging.  相似文献   
997.
The concentration of Mg(2+) required for optimal activity of chloroplast fructose 1,6-bisphosphatase (FBPase) decreases when a disulfide, located on a flexible loop containing three conserved cysteines, is reduced by the ferredoxin/thioredoxin system. Mutation of either one of two regulatory cysteines in this loop (Cys155 and Cys174 in spinach FBPase) produces an enzyme with a S(0.5) for Mg(2+) (0.6 mM) identical to that observed for the reduced WT enzyme and significantly lower than the S(0.5) of 12.2 mM of oxidized WT enzyme. E(m) for the regulatory disulfide in WT spinach FBPase is -305 mV at pH 7.0, with an E(m) vs pH dependence of -59 mV/pH unit, from pH 5.5 to 8.5. Aerobic storage of the C174S mutant produces a nonphysiological Cys155/Cys179 disulfide, rendering the enzyme partially dependent on activation by thioredoxin. Circular dichroism spectra and thiol titrations provide supporting evidence for the formation of nonphysiological disulfide bonds. Mutation of Cys179, the third conserved cysteine, produces FBPase that behaves very much like WT enzyme but which is more rapidly activated by thioredoxin f, perhaps because the E(m) of the regulatory disulfide in the mutant has been increased to -290 mV (isopotential with thioredoxin f). Structural changes in the regulatory loop lower S(0.5) for Mg(2+) to 3.2 mM for the oxidized C179S mutant. These results indicate that opening the regulatory disulfide bridge, either through reduction or mutation, produces structural changes that greatly decrease S(0.5) for Mg(2+) and that only two of the conserved cysteines play a physiological role in regulation of FBPase.  相似文献   
998.
The eukaryotic microfilament system is regulated in part through the nucleotide- and cation-dependent conformation of the actin molecule. In this review, recent literature on the crystal and solution structures of actin and other actin-superfamily proteins is summarized. Furthermore, the structure of the nucleotide binding cleft is discussed in terms of the mechanism of ATP hydrolysis and P(i) release. Two distinct domain movements are suggested to participate in the regulation of actin. (1) High-affinity binding of Mg(2+) to actin induces a rearrangement of side chains in the nucleotide binding site leading to an increased ATPase activity and polymerizability, as well as a rotation of subdomain 2 which is mediated by the hydroxyl of serine-14. (2) Hydrolysis of ATP and subsequent release of inorganic phosphate lead to a butterfly-like opening of the actin molecule brought about by a shearing in the interdomain helix 135-150. These domain rearrangements modulate the interaction of actin with a variety of different proteins, and conversely, protein binding to actin can restrict these conformational changes, with ultimate effects on the assembly state of the microfilament system.  相似文献   
999.
The hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324, rather than the type strain VC16, was found to grow on starch and sulfate as energy and carbon source. Fermentation products and enzyme activities were determined in starch-grown cells and compared to those of cells grown on lactate and sulfate. During exponential growth on starch, 1 mol of glucose-equivalent was incompletely oxidized with sulfate to approximately 2 mol acetate, 2 mol CO2 and 1 mol H2S. Starch-grown cells did not contain measurable amounts of the deazaflavin factor F420 (<0.03 nmol/mg protein) and thus did not show the F420-specific green-blue fluorescence. In contrast, lactate (1 mol) was completely oxidized with sulfate to 3 mol CO2 by strain 7324, and lactate-grown cells contained high amounts of F420 (0.6 nmol/mg protein). In extracts of starch-grown cells, the following enzymes of a modified Embden-Meyerhof pathway were detected: ADP-dependent hexokinase (ADP-HK), phosphoglucose isomerase, ADP-dependent 6-phosphofructokinase (ADP-PFK), fructose-1,6-phosphate aldolase, glyceraldehyde-3-phosphate:ferredoxin oxidoreductase (GAP:FdOR), phosphoglycerate mutase, enolase, and pyruvate kinase (PK). Specific activities of ADP-HK, ADP-PFK, GAP:FdOR, and PK were significantly higher in starch-grown cells than in lactate-grown cells, indicating induction of these enzymes during starch catabolism. Pyruvate conversion to acetate involved pyruvate:ferredoxin oxidoreductase and ADP-forming acetyl-CoA synthetase. The findings indicate that the archaeal sulfate reducer A. fulgidus strain 7324 converts starch to acetate via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming). This is the first report of growth of a sulfate reducer on starch, i.e. on a polymeric sugar.  相似文献   
1000.
Defense costs provide a major explanation for why plants in nature have not evolved to be better defended against pathogens and herbivores; however, evidence for defense costs is often lacking. Plants defend by deploying resistance traits that reduce damage, and tolerance traits that reduce the fitness effects of damage. We first tested the defense-stress cost (DSC) hypothesis that costs of defenses increase and become important under competitive stress. In a greenhouse experiment, uniparental maternal families of the host plant Arabis perennans were grown in the presence and absence of the bunch grass Bouteloua gracilis and the herbivore Plutella xylostella. Costs of resistance and tolerance manifest as reduced growth in the absence of herbivory were significant when A. perennans grew alone, but not in the competitive environment, in contrast to the DSC hypothesis. We then tested the defense-stress benefit (DSB) hypothesis that plant defenses may benefit plants in competitive situations thereby reducing net costs. For example, chemical resistance agents and tolerance may also have functions in competitive interactions. To test the DSB hypothesis, we compared differentially competitive populations for defense costs, assuming that poorer competitors from less dense habitats were less likely to have evolved defenses that also function in competition. Without competitive benefits of defenses, poorer competitors were expected to have higher net costs of defenses under competition in accordance with DSB. Populations of A. perennans and A. drummondii that differed dramatically in competitiveness were compared for costs, and as the DSB hypothesis predicts, only the poor competitor population showed costs of resistance under competition. However, cost of tolerance under competition did not differ among populations, suggesting that the poor competitors might have evolved a general stress tolerance. Although the DSC hypothesis may explain cases where defense costs increase under stress, the DSB hypothesis may explain some cases where costs decrease under competitive stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号