首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   106篇
  国内免费   2篇
  2022年   7篇
  2021年   16篇
  2020年   7篇
  2019年   11篇
  2018年   15篇
  2017年   23篇
  2016年   22篇
  2015年   39篇
  2014年   55篇
  2013年   69篇
  2012年   76篇
  2011年   93篇
  2010年   47篇
  2009年   43篇
  2008年   67篇
  2007年   76篇
  2006年   82篇
  2005年   83篇
  2004年   34篇
  2003年   25篇
  2002年   37篇
  2001年   13篇
  2000年   13篇
  1999年   8篇
  1998年   7篇
  1997年   13篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   7篇
  1991年   16篇
  1990年   15篇
  1989年   21篇
  1988年   16篇
  1987年   12篇
  1986年   10篇
  1985年   8篇
  1984年   13篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1979年   4篇
  1977年   5篇
  1976年   6篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1968年   7篇
排序方式: 共有1220条查询结果,搜索用时 593 毫秒
881.
Mammalian cells exposed to electric field pulses of nanosecond duration (nsPEF; 60-ns, 12 kV/cm) experienced a profound and long-lasting increase in passive electrical conductance (Gm) of the cell membrane, probably caused by opening of stable conductance pores (CPs). The CPs were permeable to Cl and alkali metal cations, but not to larger molecules such as propidium iodide (PI). CPs gradually resealed; the process took minutes and could be observed even in dialyzed cells and in ATP- and glucose-free solutions. Cells subjected to long nsPEF trains (up to 200 pulses) underwent severe and immediate necrotic transformation (cell swelling, blebbing, cytoplasm granulation), but remained impermeable to PI for at least 30-60 min after the exposure. Both Gm increase after short nsPEF trains and necrotic changes after long nsPEF trains were cell type-dependent: they were much weaker in HeLa than in GH3 cells. La3+ and Gd3+ ions significantly inhibited the nsPEF-induced Gm increase (probably by blocking the CPs), and effectively protected intensely exposed cells from developing necrosis. We conclude that plasma membrane permeabilization is the principal cause of necrotic transformation in nsPEF-exposed cells and probably contributes to other known nsPEF bioeffects.  相似文献   
882.
We recently debuted a variety of linear polyethylenimines (LPEIs) with low molecular weight as carriers for gene delivery. The highest transfection efficiency (approximately 44%) was obtained with LPEI 6.6 kDa, while the cytotoxicity remained low (approximately 90% of CHO-K1 cells survived the transfection procedure). Here, we investigated various steps during the transfection process using LPEI 8.1, 5.0 and 1.8 kDa, in order to gain a more complete insight into LPEI-mediated gene transfer and to explore conceptual aspects for further optimization. The cellular uptake characterized by flow cytometry was similar for LPEI 8.1 and 5.0 kDa, while it was significantly lower for LPEI 1.8 kDa. The transfection efficacy in contrast was at NP 24 20.07% for LPEI 8.1 kDa and 39.71% for LPEI 5.0 kDa. This suggests that the endocytosis seems not to be a decisive parameter that determines the efficacy of a polymer in the transfection process. Real-time PCR investigations revealed that LPEI 1.8 kDa likewise or even better protected plasmid from degradation compared to LPEI 5.0 or 8.1 kDa. Furthermore, we found that 1/6 to 1/3 intact plasmid DNA reached the intracellular compartments after complexation with LPEI 1.8 kDa. Therefore, the amount of plasmid DNA available in the cytoplasm seems not to be a limiting factor in the transfection process. That LPEI 8.1-polyplexes built at NP 12 in glucose and transfected in serum-free culture conditions were superior to those built in sodium chloride or transfected in serum-containing conditions points at the structure as a decisive parameter deserving more attention in future studies.  相似文献   
883.
Bacterial reaction centers (RCs) convert light energy into chemical free energy via the double reduction and protonation of the secondary quinone electron acceptor, QB, to the dihydroquinone QBH2. Two RC mutants (M266His --> Leu and M266His --> Ala) with a modified ligand of the non-heme iron have been studied by flash-induced absorbance change spectroscopy. No important changes were observed for the rate constants of the first and second electron transfers between the first quinone electron acceptor, QA, and QB. However, in the M266HL mutant a destabilization of approximately 40 meV of the free energy level of QA- was observed, at variance with the M266HA mutant. The superposition of the three-dimensional X-ray structures of the three proteins in the QA region provides no obvious explanation for the energy modification in the M266HL mutant. The shift of the midpoint redox potential of QA/QA- in M266HL caused accelerated recombination of the charges in the P+ QA- state of the RCs where the native QA was replaced by a low potential anthraquinone (AQA). As previously reported for the native RCs, in the M266HL we observed a biphasicity of the P+ AQA- --> P AQA charge recombination. Interestingly, both phases present a similar acceleration in the M266HL mutant with respect to the wild type. The pH dependencies of the proton uptake upon QA- and QB- formations are superimposable in both mutants but very different from those of native RCs. The data measured in mutants are similar to those that we previously obtained on strains modified at various sites of the cytoplasmic region. The similarity of the response to these different mutations is puzzling, and we propose that it arises from a collective behavior of multiple acidic residues resulting in strongly anticooperative proton binding. The unspecific disappearance of the high pH band of proton uptake observed in all these mutants appears as the natural consequence of removing any member of an interactive proton cluster. This long range interaction also accounts for the similar responses to mutations of the proton uptake pattern induced by either QA- or QB-. We surmise that the presence of an extended protonated water H-bond network providing protons to QB is responsible for these effects.  相似文献   
884.
The oncoprotein Ras is anchored in lipid membranes due to its C-terminal lipid modification. The ubiquitously expressed Ras nucleotide exchange-factor hSOS1 promotes nucleotide exchange and thus Ras activation. This reaction is enhanced by a positive feedback loop whereby activated Ras binds to an allosteric site of SOS to enhance GEF activity. Here we present biochemical data showing that prenylation of both active site bound and allosterically bound N-Ras is required for efficient hSOS1-promoted nucleotide exchange. Our results indicate that prenyl sensitivity of the allosteric feedback-activation is mediated by the PH domain of hSOS1. Farnesylation of Ras thereby allows hSOS1 to bind even GDP-loaded allosteric regulator to maintain basal hSOS1-activity.  相似文献   
885.
Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.  相似文献   
886.
887.
Phospholemman (FXYD1) is a single-transmembrane protein regulator of Na,K-ATPase, expressed strongly in heart, skeletal muscle, and brain and phosphorylated by protein kinases A and C at Ser-68 and Ser-63, respectively. Binding of FXYD1 reduces Na,K-ATPase activity, and phosphorylation at Ser-68 or Ser-63 relieves the inhibition. Despite the accumulated information on physiological effects, whole cell studies provide only limited information on molecular mechanisms. As a complementary approach, we utilized purified human Na,K-ATPase (α1β1 and α2β1) reconstituted with FXYD1 or mutants S63E, S68E, and S63E,S68E that mimic phosphorylation at Ser-63 and Ser-68. Compared with control α1β1, FXYD1 reduces Vmax and turnover rate and raises K0.5Na. The phosphomimetic mutants reverse these effects and reduce K0.5Na below control K0.5Na. Effects on α2β1 are similar but smaller. Experiments in proteoliposomes reconstituted with α1β1 show analogous effects of FXYD1 on K0.5Na, which are abolished by phosphomimetic mutants and also by increasing mole fractions of DOPS in the proteoliposomes. Stopped-flow experiments using the dye RH421 show that FXYD1 slows the conformational transition E2(2K)ATP → E1(3Na)ATP but does not affect 3NaE1P → E2P3Na. This regulatory effect is explained simply by molecular modeling, which indicates that a cytoplasmic helix (residues 60–70) docks between the αN and αP domains in the E2 conformation, but docking is weaker in E1 (also for phosphomimetic mutants). Taken together with previous work showing that FXYD1 also raises binding affinity for the Na+-selective site III, these results provide a rather comprehensive picture of the regulatory mechanism of FXYD1 that complements the physiological studies.  相似文献   
888.
BACKGROUND/AIMS: Cardiac function is increasingly studied using murine models. However, current multicellular preparations to investigate contractile properties have substantial technical and biological limitations and are especially difficult to apply to the developing murine heart. METHODS: Newborn murine hearts were cut with a vibratome into viable tissue slices. The structural and functional integrity of the tissue was shown by histology, ATP content and sharp electrode recordings. RESULTS: Within the first 48 hours after slicing structure remained intact without induction of apoptosis. ATP concentrations and action potential parameters were comparable to those of physiological tissue. Isometric force measurements demonstrated a physiological force-frequency relationship with a ;primary-phase' negative force-frequency relationship up to 1-2 Hz and a ;secondary-phase' positive force-frequency relationship up to 8 Hz. (-)-Isoproterenol (10(-6) mol/l) increased active force to 251 +/- 35% (n=15) of baseline values and shortened relaxation times indicating a preserved beta-adrenergic regulation of contraction. Changes of the force-frequency relationship after application of ryanodine and nifedipine indicated functionality of calcium release from the sarcoplasmic reticulum and of L-type calcium channels. CONCLUSION: Generation of viable, physiological intact ventricular slices from neonatal hearts is feasible and provides a robust model to study loaded contractions.  相似文献   
889.
BACKGROUND/AIMS: Early embryonic cardiomyocytes beat spontaneously. The hyperpolarization-activated cyclic-nucleotide-modulated current (I(f)) appears to be involved in its modulation as it is highly expressed at this stage. The spontaneous beating of early embryonic heart cells is slowed by acetylcholine (ACh), and our earlier studies identified a key role for nitric oxide (NO) in the regulation of the voltage dependent L-type Ca(2+) current (I(Ca,L)). The aim of the present study was to clarify whether and via which signalling pathway(s) I(f) is regulated upon muscarinic receptor activation in early embryonic (E9.5 to E11.5) cardiomyocytes. METHODS: The whole-cell patch clamp technique in combination with pharmacology and/or knock out mouse models was used to investigate the regulation of I(f). RESULTS: We found that the ACh analogue carbachol (CCh, 10 micromol) led in the majority of cells (68%, n=50) to a significant depression of I(f) by 16.3+/-1.4% (n=34, p<0.01, voltage steps from -35 mV to -110 mV). This cholinergic inhibition was mediated by the NO/cGMP signalling pathway as it was largely reversed by superfusion with the non selective nitric oxide synthase (NOS) inhibitor N(G)-Methyl-L-arginine acetate salt (L-NMMA, 1 mmol), the inhibitor of the soluble guanylyl cyclase (sGC) 1H-[1, 2, 4]Oxadiazolo[4, 3-a]quinoxalin-1-one (ODQ, 100 micromol) and a selective inhibitor of the phosphodiesterase (PDE) type 2 Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, 30 micromol). Analysis of the muscarinic signalling in embryonic cardiomyocytes harvested from NOS2 (-/-) and NOS3 (-/-) mice revealed that the NOS3 isoform was entirely responsible for the muscarinic receptor-induced NO production. CONCLUSIONS: Muscarinic receptor stimulation depresses I(f) by generating NO via the NOS3 and the cGMP/PDE type 2 signalling pathway in early embryonic cardiomyocytes. This suggests that NO is a key signalling molecule involved in the regulation of chronotropy of early embryonic heart cells.  相似文献   
890.
The induction of proinflammatory cytokines in stressed myocardium is considered an innate immune response, but the role of beta-adrenergic signaling in this proinflammatory response and the mechanisms of cardioprotection by beta-blockers are not fully understood. In the present study, we analyzed interleukin-6 (IL-6) formation and promoter activation in beta-adrenoceptor-stimulated neonatal rat cardiomyocytes, in transgenic mice with cardiac overexpression of beta1-adrenoceptors, and in failing human myocardium. IL-6 formation and release in cultured cardiomyocytes under beta-adrenoceptor stimulation requires the activation of activating protein-1 (AP-1) binding sites and of cAMP response elements (CRE) in the IL-6 promoter, but this release (140 +/- 6 pg/mL medium under 10(-6) M isoproterenol vs. 81 +/- 3 pg/mL unstimulated, P < 0.05) is moderate compared with that under inflammatory stimulation (855 +/- 44 pg/mL, endotoxin 0.1microg/mL). Similarly, IL-6 is induced together with CRE- and AP-1 activation in the left ventricle (LV) of beta1-transgenic mice before the onset of failure. However, we observed IL-6 induction with activation of NF-kappaB in addition to CRE and AP-1 in beta1-transgenic mice at the age of 22 weeks and in explanted human LV after full development of failure. Treatment with beta-blockers lowered myocardial IL-6 as well as AP-1, NF-kappaB, and CRE activation. Therefore, the activation of AP-1 and CRE is part of beta-adrenergic signal transduction for IL-6 induction in nonfailing and failing cardiomyocytes, whereas NF-kappaB activation contributes only in overloaded failing myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号