首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   76篇
  国内免费   2篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   14篇
  2020年   8篇
  2019年   10篇
  2018年   12篇
  2017年   27篇
  2016年   17篇
  2015年   28篇
  2014年   46篇
  2013年   66篇
  2012年   69篇
  2011年   82篇
  2010年   41篇
  2009年   35篇
  2008年   58篇
  2007年   59篇
  2006年   69篇
  2005年   74篇
  2004年   35篇
  2003年   20篇
  2002年   27篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1960年   1篇
排序方式: 共有890条查询结果,搜索用时 31 毫秒
21.
The purpose of this study was to mark endangered sterlet (Acipenser ruthenus) with visible implant elastomer (VIE) in order to assess mortality, compatibility, retention, persistence and histological reactions resulting from this tagging technique. It was hypothesized there would be only minor effects on the fishes' health, and assumed that acute effects would be more pronounced than long‐term effects. On 11 September 2013, 20 specimens were tagged ventrally with visible implant elastomer, 20 received a subcutaneous injection with 0.9% NaCl solution, and another 20 served as untreated control. Mean total length was 28.0 ± 1.8 cm and mean body mass 64.1 ± 12.0 g. The sterlets were kept in four 4,000‐L tanks filled with 2,400‐L water. Acute effects were monitored for 95 days, where fish were held at temperatures between 2.4°C and 15.2°C, reflecting outdoor conditions. Chronic effects were examined 282 days post‐tagging through histological sections of the tagging region in five sterlets. During the first 95 days of observation, tag retention was 100%. No signs of incompatibility were detected. Body mass did not significantly differ between VIE‐tagged fish and controls. At day 282 post‐tagging, however, distinct tissue reactions were visible at the tagging sites of nine fish. Histological examination of five fish revealed a variable degree of infiltration with leukocytes in the areas around the elastomer, which did not necessarily correspond with the externally visible degree of inflammation. After medical treatment, the lesions healed without complications, whereas the retention rate of the VIE tags was 5%. According to the findings, the tag location rather than the tag itself was responsible for the externally visible irritations, indicating that the ventral subcutis of sterlet is not a suitable site, even for small VIE tags in long‐term studies. The results of this study also suggest that VIE marking should in general be critically evaluated before application in field studies.  相似文献   
22.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   
23.
24.
25.
Critical blind assessment of structure prediction techniques is crucial for the scientific community to establish the state of the art, identify bottlenecks, and guide future developments. In Critical Assessment of Techniques in Structure Prediction (CASP), human experts assess the performance of participating methods in relation to the difficulty of the prediction task in a biennial experiment on approximately 100 targets. Yet, the development of automated computational modeling methods requires more frequent evaluation cycles and larger sets of data. The “Continuous Automated Model EvaluatiOn (CAMEO)” platform complements CASP by conducting fully automated blind prediction evaluations based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the Protein Data Bank (PDB). Each week, CAMEO publishes benchmarking results for predictions corresponding to a set of about 20 targets collected during a 4-day prediction window. CAMEO benchmarking data are generated consistently for all methods at the same point in time, enabling developers to cross-validate their method's performance, and referring to their results in publications. Many successful participants of CASP have used CAMEO—either by directly benchmarking their methods within the system or by comparing their own performance to CAMEO reference data. CAMEO offers a variety of scores reflecting different aspects of structure modeling, for example, binding site accuracy, homo-oligomer interface quality, or accuracy of local model confidence estimates. By introducing the "bestSingleTemplate" method based on structure superpositions as a reference for the accuracy of 3D modeling predictions, CAMEO facilitates objective comparison of techniques and fosters the development of advanced methods.  相似文献   
26.
Summary Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequent human inherited diseases. The main feature of the disease is the development of renal cysts, first occurring in the proximal tubules, and with time, dominating all segments of the nephron, leading to end-stage renal disease in 50% of the patients in their fifth decade of life. A therapy for polycystic kidney disease (PKD) has not yet been developed. Patients coming to end-stage ADPKD require long-term dialysis and/or transplantation. A suitable animal model to study ADPKD is the spontaneously mutated Han:SPRD (cy/ +) rat, but a method to cultivate Han:SPRD (cy/ +) derived renal cells which preserves their ability to form cyst-like structures in vitro has previously not been reported. Based on this well-characterized animal model, we developed a cell culture model of renal cyst formation in vitro. When renal cells of the Han:SPRD (cy/ +) rat were isolated and cultured under conditions that prevent cell-substratum adhesion, large amounts of cyst-like structures were formed de novo from Han:SPRD (cy/ +) derived renal cells, but only a few from control rat renal cells. In contrast, when cultivated on plastic as monolayer cultures, Han:SPRD (cy/ +)-derived and control rat-derived renal cells were indistinguishable and did not form cyst-like structures. Immunohistochemical characterization of the cyst-like structures suggests tubular epithelial origin of the cyst-forming cells. The amount of cysts formed from Han:SPRD (cy/ +)-derived renal cells grown in a stationary suspension culture is susceptible to modulation by different conditions. Human cyst fluid and epidermal growth factor both stimulated the formation of cysts from Han:SPRD (cy/ +)-derived renal cells whereas taxol inhibited cystogenesis. In contrast, neither human cyst fluid nor epidermal growth factor affected the amount of cysts formed by control rat renal cells. As the culture model reported here allows not only the distinction of PKD-derived tubular epithelium from its normal counterpart, but also the modulation of cyst formation especially by Han:SPRD (cy/ +)-derived renal cells, it might be a useful prescreening protocol for potential treatments for PKD and thus reduce the need for animal experiments. Both authors contributed equally to the work.  相似文献   
27.
Purpose The carcinoembryonic antigen (CEA) is extensively expressed on the vast majority of colorectal, gastric, and pancreatic carcinomas, and, therefore, is a good target for tumor immunotherapy. CD4+ T-helper (Th) cells play a critical role in initiation, regulation, and maintenance of immune responses. In this study, we sought to identify Th epitopes derived from CEA which can induce CEA-specific Th responses. The combined application with cytotoxic T lymphocyte (CTL) epitopes would be more potent than tumor vaccines that primarily activate CTL alone.Methods We utilized a combined approach of using a computer-based algorithm analysis TEPITOPE and in vitro biological analysis to identify Th epitopes in CEA.Results Initial screening of healthy donors showed that all five predicted peptides derived from CEA could induce peptide-specific T-cell proliferation in vitro. We characterized these CEA epitopes by establishing and analyzing peptide-specific T-cell clones. It was shown that CD4+ T-cells specific for the CEA116 epitope can recognize and respond to naturally processed CEA protein and CEA116 epitope can be promiscuously presented by commonly found major histocompatibility complex (MHC) alleles. Furthermore, it was demonstrated that immunization of human leukocyte antigen (HLA)-DR4 transgenic mice with CEA116 peptide elicited antigen-specific Th responses which can recognize the antigenic peptides derived from CEA protein and CEA-positive tumors.Conclusion The MHC class II-restricted epitope CEA116 could be used in the design of peptide-based tumor vaccine against several common cancers expressing CEA.  相似文献   
28.
Fiber optic in vivo imaging in the mammalian nervous system   总被引:4,自引:0,他引:4  
The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications.  相似文献   
29.
A significant percentage of eukaryotic proteins contain posttranslationalmodifications, including glycosylation, which are required forbiological function. However, the understanding of the structure–functionrelationships of N-glycans has lagged significantly due to themicroheterogeneity of glycosylation in mammalian produced proteins.Recently we reported on the cellular engineering of yeast toreplicate human N-glycosylation for the production of glycoproteins.Here we report the engineering of an artificial glycosylationpathway in Pichia pastoris blocked in dolichol oligosaccharideassembly. The PpALG3 gene encoding Dol-P-Man:Man5GlcNAc2-PP-Dolmannosyltransferase was deleted in a strain that was previouslyengineered to produce hybrid GlcNAcMan5GlcNAc2 human N-glycans.Employing this approach, combined with the use of combinatorialgenetic libraries, we engineered P. pastoris strains that synthesizecomplex GlcNAc2Man3GlcNAc2 N-glycans with striking homogeneity.Furthermore, through expression of a Golgi-localized fusionprotein comprising UDP-glucose 4-epimerase and ß-1,4-galactosyltransferase activities we demonstrate that this structure isa substrate for highly efficient in vivo galactose addition.Taken together, these data demonstrate that the artificial invivo glycoengineering of yeast represents a major advance inthe production of glycoproteins and will emerge as a practicaltool to systematically elucidate the structure–functionrelationship of N-glycans. 1 These authors contributed equally to this work. 2 To whom correspondence should be addressed; e-mail: swildt{at}glycofi.com  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号