首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1442篇
  免费   126篇
  国内免费   2篇
  2022年   7篇
  2021年   20篇
  2020年   14篇
  2019年   22篇
  2018年   21篇
  2017年   27篇
  2016年   27篇
  2015年   44篇
  2014年   68篇
  2013年   86篇
  2012年   113篇
  2011年   110篇
  2010年   73篇
  2009年   50篇
  2008年   89篇
  2007年   94篇
  2006年   97篇
  2005年   101篇
  2004年   52篇
  2003年   45篇
  2002年   42篇
  2001年   24篇
  2000年   22篇
  1999年   23篇
  1998年   17篇
  1997年   15篇
  1996年   16篇
  1995年   9篇
  1994年   11篇
  1993年   12篇
  1992年   9篇
  1991年   7篇
  1990年   15篇
  1989年   15篇
  1988年   8篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   8篇
  1983年   10篇
  1982年   7篇
  1981年   6篇
  1979年   8篇
  1978年   9篇
  1977年   8篇
  1975年   6篇
  1974年   7篇
  1973年   11篇
  1972年   9篇
  1967年   7篇
排序方式: 共有1570条查询结果,搜索用时 15 毫秒
41.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
42.
43.
Stream substratum restoration is a widely applied tool to improve spawning habitat quality for salmonid fishes. However, there is a lack of studies which comprehensively assess effects of the restoration on site, as well as on downstream habitats. Our study addressed effects at both locations and compared abiotic (analyses of texture, penetration resistance, oxygen concentration, redox, nitrite, nitrate, ammonium, pH, electric conductivity, temperature) with biotic (depth-specific macroinvertrebrate abundance and diversity, brown trout hatching success) indicators before and after excavation of the substratum in a highly colmated brown trout spawning site. Strong improvements of hyporheic water conditions (increased oxygen supply and redox potential, reduced concentrations of nitrite and ammonium) as well as ~50 % reductions of substratum compaction and fine sediment content were observed 1 day after the restoration measure. Improvements of habitat quality were still detectable 3 months after treatment. Consequently, the hatching success of Salmo trutta eggs increased from 0 % to 77 % after the restoration. Short-term decrease of macroinvertebrate abundance (from 13.1 to 3.9 macroinvertebrates/kg substratum) was observed within the hyporheic zone of the restoration site, but after 3 months, the number of taxa increased from 13 to 22 taxa and abundance reached 17.9 macroinvertebrates/kg. Significantly increased fine sediment deposition was detected within 1 km downstream of the restoration site and may negatively affect these habitats. Trade-offs between positive effects at restored sites and negative effects in downstream habitats need to be considered for a comprehensive evaluation of stream substratum restoration.  相似文献   
44.
Xylanases are capable of decomposing xylans, the major components in plant cell wall, and releasing the constituent sugars for further applications. Because xylanase is widely used in various manufacturing processes, high specific activity, and thermostability are desirable. Here, the wild‐type and mutant (E146A and E251A) catalytic domain of xylanase from Thermoanaerobacterium saccharolyticum JW/SL‐YS485 (TsXylA) were expressed in Escherichia coli and purified subsequently. The recombinant protein showed optimal temperature and pH of 75°C and 6.5, respectively, and it remained fully active even after heat treatment at 75°C for 1 h. Furthermore, the crystal structures of apo‐form wild‐type TsXylA and the xylobiose‐, xylotriose‐, and xylotetraose‐bound E146A and E251A mutants were solved by X‐ray diffraction to high resolution (1.32–1.66 Å). The protein forms a classic (β/α)8 folding of typical GH10 xylanases. The ligands in substrate‐binding groove as well as the interactions between sugars and active‐site residues were clearly elucidated by analyzing the complex structures. According to the structural analyses, TsXylA utilizes a double displacement catalytic machinery to carry out the enzymatic reactions. In conclusion, TsXylA is effective under industrially favored conditions, and our findings provide fundamental knowledge which may contribute to further enhancement of the enzyme performance through molecular engineering. Proteins 2013; 81:1256–1265. © 2013 Wiley Periodicals, Inc.  相似文献   
45.
Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin‐like growth factor I (IGF‐I), fibroblast growth factor‐2 (FGF‐2), transforming growth factor beta1 (TGF‐β1), bone morphogenetic protein‐2 (BMP‐2), and bone morphogenetic protien‐7 (BMP‐7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF‐I and FGF‐2 maximized cell proliferation. The three‐transgene group encoding IGF‐I, BMP‐2, and BMP‐7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell‐based articular cartilage repair. J. Cell. Biochem. 114: 908–919, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
46.
Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals.  相似文献   
47.
This paper evaluates the long‐term effect of an ecological network of calcareous grasslands, a habitat type that experienced dramatic habitat loss and fragmentation during the 20th century, on species richness of habitat specialist plants. Calcareous grasslands are of special conservation concern as the habitat type with the highest diversity in plant and invertebrate species in central Europe. A baseline survey in 1989 established complete vascular plant species lists for all 62 previously abandoned calcareous grassland patches in the study area and assessed the presence of 48 habitat specialist plant species. An ecological network was initiated in 1989 to reconnect these patches with existing grazed pastures (core areas) through large flock sheep herding where feasible, as sheep are thought to be the primary dispersal vectors for calcareous grassland plants. An evaluation survey in 2009 showed significant increase in species richness of habitat specialist plants in patches reconnected by sheep herding, indicating successful colonizations by habitat specialist plants, while ungrazed patches showed no significant change. Observed increase in species richness between 1989 and 2009 was related to connectivity by sheep herding and the presence of a diversity of structural elements providing microsites for establishment. Baseline species richness of the patches, which had been abandoned since at least 1960, was associated with patch area, supporting the effect of ecological drift, and with vegetation type, which suggests that delays in extinction may be related to site factors governing the strength of competition with later seral species. The implementation of this ecological network represents a long‐term ‘natural experiment’ with baseline data, manipulation, and evaluation of hypothesized effects on a clearly defined target variable. It thus provides much needed empirical evidence that species loss in fragmented calcareous grassland communities can be counteracted by restoring functional connectivity among remnant patches.  相似文献   
48.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   
49.
The mating system of flowering plant populations evolves through selection on genetically based phenotypic variation in floral traits. The physical separation of anthers and stigmas within flowers (herkogamy) is expected to be an important target of selection to limit self-fertilization. We investigated the pattern of phenotypic and genetic variation in herkogamy and its effect of self-fertilization in a broad sample of natural populations of Aquilegia canadensis, a species that is highly selfing despite strong inbreeding depression. Within natural populations, plants exhibit substantial phenotypic variation in herkogamy caused primarily by variation in pistil length rather than stamen length. Compared to other floral traits, herkogamy is much more variable and a greater proportion of variation is distributed among rather than within individuals. We tested for a genetic component of this marked phenotypic variation by growing naturally pollinated seed families from five populations in a common greenhouse environment. For three populations, we detected a significant variation in herkogamy among families, and a positive regression between parental herkogamy measured in the field and progeny herkogamy in the greenhouse, suggesting that there is often genetic variation in herkogamy within natural populations. We estimated levels of self-fertilization for groups of flowers that differed in herkogamy and show that, as expected, herkogamy was associated with reduced selfing in 13 of 19 populations. In six of these populations, we performed floral emasculations to show that this decrease in selfing is due to decreased autogamy (within-flower selfing), the mode of selfing that herkogamy should most directly influence. Taken together, these results suggest that increased herkogamy should be selected to reduce the production of low-quality selfed seed. The combination of high selfing and substantial genetic variation for herkogamy in A. canadensis is enigmatic, and reconciling this observation will require a more integrated analysis of how herkogamy influences not only self-fertilization, but also patterns of outcross pollen import and export.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号