首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   83篇
  725篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   28篇
  2014年   40篇
  2013年   35篇
  2012年   31篇
  2011年   39篇
  2010年   20篇
  2009年   16篇
  2008年   37篇
  2007年   33篇
  2006年   23篇
  2005年   36篇
  2004年   32篇
  2003年   20篇
  2002年   20篇
  2001年   18篇
  2000年   16篇
  1999年   14篇
  1998年   7篇
  1997年   3篇
  1996年   11篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   11篇
  1990年   13篇
  1989年   11篇
  1988年   20篇
  1987年   16篇
  1986年   10篇
  1985年   7篇
  1984年   11篇
  1983年   4篇
  1982年   12篇
  1981年   10篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1971年   4篇
  1970年   4篇
  1963年   2篇
  1913年   2篇
排序方式: 共有725条查询结果,搜索用时 15 毫秒
221.
Reactive nitrogen (N) and ozone (O3) are the most widespread atmospheric pollutants with significant implications for conservation of semi-natural vegetation; their combined effects have, however, not been tested in long-term field experiments. To investigate these effects on the species composition of a subalpine Geo-Montani-Nardetum pasture, 180 turf monoliths were exposed for seven years to five N loads (0, +5, +10, +25, +50 kg N ha?1 y?1) in combination with three O3 levels (ambient, 1.2 or 1.6× ambient concentration) in a free-air fumigation experiment at 2000 m a.s.l. in the Central Alps. Aboveground biomass of grasses, forbs, sedges, and legumes, as well as individual species abundance was recorded annually. N addition caused strong changes in community composition and slightly reduced Shannon diversity: Sedges (Carex sempervirens and Carex ornithopoda) tripled their fractional biomass at the expense of legumes (Trifolium alpinum), grasses (Agrostis capillaris, Briza media, Festuca spp.), and forbs, the latter of which responded inconsistently. Compositional changes were significant with +5 kg ha?1 y?1; at all levels of N, however, changes ceased after 5 years. Elevated O3 and the combined O3 × N exposure had no effect on functional group productivity. Overall the results reveal high N sensitivity of the subalpine grassland, but low sensitivity to O3, singly or in combination with N. Thus, in the longer term any input of N above the current ambient deposition may cause a shift in the plant community composition of these ecosystems which are considered hotspots for biodiversity.  相似文献   
222.
Although nisin is a model lantibiotic, our knowledge of the specific interactions of prenisin with its modification enzymes remains fragmentary. Here, we demonstrate that the nisin modification enzymes NisB and NisC can be pulled down in vitro from Lactococcus lactis by an engineered His-tagged prenisin. This approach enables us to determine important intermolecular interactions of prenisin with its modification machinery within L. lactis. We demonstrate that (i) NisB has stronger interactions with precursor nisin than NisC has, (ii) deletion of the propeptide part keeping the nisin leader intact leads to a lack of binding, (iii) NisB point mutants of highly conserved residues W616, F342A, Y346F and P639A are still able to dehydrate prenisin, (iv) NisB Δ(77-79)Y80F mutant decreased the levels of NisB-prenisin interactions and resulted in unmodified prenisin, (v) substitution of an active site residue H331A in NisC leads to higher amounts of the co-purified complex, (vi) NisB is present in the form of a dimer, and (vii) the region FNLD (-18 to -15) of the leader is an important site for binding not only to NisB, but also to NisC.  相似文献   
223.
The first N,8′-coupled naphthylisoquinoline alkaloids with free phenolic OH groups, 4′-O-demethylancistrocladinium A and 6,4′-O-didemethylancistrocladinium A, have been isolated from the leaves and bark of the Vietnamese liana Ancistrocladus cochinchinensis, along with its known, non-phenolic parent compound, ancistrocladinium A, and four C,C-coupled representatives. The structure elucidation was achieved by chemical, spectroscopic, and chiroptical methods. The mono-phenolic alkaloid showed excellent activities in particular against the pathogen causing Chagas’ disease, Trypanosoma cruzi.  相似文献   
224.
225.
226.

Background

Different forms of case management for dementia have emerged over the past few years. In the COMPAS study (Collaborative dementia care for patients and caregivers study), two prominent Dutch case management forms were studied: the linkage and the integrated care form.

Aim of study

Evaluation of the (cost)effectiveness of two dementia case management forms compared to usual care as well as factors that facilitated or impeded their implementation.

Methods

A mixed methods design with a) a prospective, observational controlled cohort study with 2 years follow-up among 521 dyads of people with dementia and their primary informal caregiver with and without case management; b) interviews with 22 stakeholders on facilitating and impeding factors of the implementation and continuity of the two case management models. Outcome measures were severity and frequency of behavioural problems (NPI) for the person with dementia and mental health complaints (GHQ-12) for the informal caregiver, total met and unmet care needs (CANE) and quality adjusted life years (QALYs).

Results

Outcomes showed a better quality of life of informal caregivers in the integrated model compared to the linkage model. Caregivers in the control group reported more care needs than those in both case management groups.The independence of the case management provider in the integrated model facilitated the implementation, while the rivalry between multiple providers in the linkage model impeded the implementation. The costs of care were lower in the linkage model (minus 22 %) and integrated care model (minus 33 %) compared to the control group.

Conclusion

The integrated care form was (very) cost-effective in comparison with the linkage form or no case management. The integrated care form is easy to implement.
  相似文献   
227.
It was recently found that the cytoplasmic butyryl-coenzyme A (butyryl-CoA) dehydrogenase-EtfAB complex from Clostridium kluyveri couples the exergonic reduction of crotonyl-CoA to butyryl-CoA with NADH and the endergonic reduction of ferredoxin with NADH via flavin-based electron bifurcation. We report here on a second cytoplasmic enzyme complex in C. kluyveri capable of energetic coupling via this novel mechanism. It was found that the purified iron-sulfur flavoprotein complex NfnAB couples the exergonic reduction of NADP+ with reduced ferredoxin (Fdred) and the endergonic reduction of NADP+ with NADH in a reversible reaction: Fdred2− + NADH + 2 NADP+ + H+ = Fdox + NAD+ + 2 NADPH. The role of this energy-converting enzyme complex in the ethanol-acetate fermentation of C. kluyveri is discussed.Clostridium kluyveri is unique in fermenting ethanol and acetate to butyrate, caproate, and H2 (reaction 1) and in deriving a large (30%) portion of its cell carbon from CO2. Both the energy metabolism and the pathways of biosynthesis have therefore been the subject of many investigations (for relevant literature, see references 12 and 27). (1)During growth of C. kluyveri on ethanol and acetate, approximately five ethanol and four acetate molecules are converted to three butyrate molecules and one caproate molecule (reaction 1a), and one ethanol molecule is oxidized to one acetate, one H+, and two H2 (reaction 1b) molecules (23, 31). How exergonic reaction 1a is coupled with endergonic reaction 1b and with ATP synthesis from ADP and Pi (ΔGo′ = +32 kJ/mol) has remained unclear for many years. (1a) (1b)We recently showed (12) that, in Clostridium kluyveri, the exergonic reduction of crotonyl-coenzyme A (crotonyl-CoA) (Eo′ = −10 mV) with NADH (Eo′ = −320 mV) involved in reaction 1a is coupled with the endergonic reduction of ferredoxin (Fdox) (Eo′ = −420 mV) with NADH (Eo′ = −320 mV) involved in reaction 1b via the recently proposed mechanism of flavin-based electron bifurcation (7). The coupling reaction is catalyzed by the cytoplasmic butyryl-CoA dehydrogenase-EtfAB complex (reaction 2) (12): (2)The reduced ferredoxin (Fdred2−) is assumed to be used for rereduction of NAD+ via a membrane-associated, proton-translocating ferredoxin:NAD oxidoreductase (RnfABCDEG) (reaction 3), and the proton motive force thus generated is assumed to drive the phosphorylation of ADP via a membrane-associated F1F0 ATP synthetase (reaction 4): (3) (4)The novel coupling mechanism represented by reactions 2 and 3 allowed for the first time the possibility of formulating a metabolic scheme for the ethanol-acetate fermentation that could account for the observed fermentation products and growth yields and thus for the observed ATP gains (27). One issue, however, remained open, namely, why the formation of butyrate from ethanol and acetate in the fermentation involves both an NADP+- and an NAD+-specific β-hydroxybutyryl-CoA dehydrogenase (16), considering that, in the oxidative part of the fermentation (ethanol oxidation to acetyl-CoA), only NADH is generated (8, 9, 13).The presence of a reduced ferredoxin:NADP+ oxidoreductase was proposed based on results of enzymatic studies performed 40 years ago. Cell extracts of Clostridium kluyveri were found to catalyze the formation of H2 from NADPH in a ferredoxin- and NAD+-dependent reaction (34). The results were interpreted to indicate that C. kluyveri contains a ferredoxin-dependent hydrogenase and an NADPH:ferredoxin oxidoreductase with transhydrogenase activity. H2 formation from NADPH was strictly dependent on the presence of NAD+ and was inhibited by NADH, inhibition being competitive with the presence of NAD+, indicating that ferredoxin reduction with NADPH is under the allosteric control of the NAD+/NADH couple. The cell extracts also catalyzed the NADH-dependent reduction of NADP+ with reduced ferredoxin (21, 34). Purification of the enzyme catalyzing these reactions was not achieved, and no function in the energy metabolism of C. kluyveri was assigned.In this communication, we report on the properties of the recombinant enzyme that catalyzes the NAD+-dependent reduction of ferredoxin with NADPH and the NADH-dependent reduction of NADP+ with reduced ferredoxin and show that the cytoplasmic heterodimeric enzyme couples the exergonic reduction of NADP+ with reduced ferredoxin with the endergonic reduction of NADP+ with NADH in a fully reversible reaction. The transhydrogenation reaction is endergonic, because in vivo the NADH/NAD+ ratio is generally near 0.3 and the NADPH/NADP+ ratio is generally above 1 (2, 30). (5)NADP+ reduction is most probably the physiological function of the enzyme, which is why we chose the abbreviation NfnAB (for NADH-dependent reduced ferredoxin:NADP+ oxidoreductase).  相似文献   
228.
A monoclonal antibody derived from a mouse immunized with bovine epidermal prekeratin has been characterized by its binding to cytoskeletal polypeptides separated by one- or two-dimensional gel electrophoresis and by immunofluorescence microscopy. This antibody (KG 8.13) binds to a determinant present in a large number of human cytokeratin polypeptides, notably some polypeptides (Nos. 1, 5, 6, 7, and 8) of the 'basic cytokeratin subfamily' defined by peptide mapping, as well as a few acidic cytokeratins such as the epidermis-specific cytokeratins Nos. 10 and 11 and the more widespread cytokeratin No. 18. This antibody reacts specifically with a wide variety of epithelial tissues and cultured epithelial cells, in agreement with previous findings that at least one polypeptide of the basic cytokeratin subfamily is present in all normal and neoplastic epithelial cells so far examined. The antibody also reacts with corresponding cytokeratin polypeptides in a broad range of species including man, cow, chick, and amphibia but shows only limited reactivity with only a few rodent cytokeratins. The value of this broad-range monoclonal antibody, which apparently recognizes a stable cytokeratin determinant ubiquitous in human epithelia, for the immunohistochemical identification of epithelia and carcinomas is discussed.  相似文献   
229.
230.
The CD95 receptor: apoptosis revisited   总被引:4,自引:0,他引:4  
CD95 is the quintessential death receptor and, when it is bound by ligand, cells undergo apoptosis. Recent evidence suggests, however, that CD95 mediates not only apoptosis but also diverse nonapoptotic functions depending on the tissue and the conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号