首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   83篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   28篇
  2014年   40篇
  2013年   35篇
  2012年   31篇
  2011年   39篇
  2010年   20篇
  2009年   16篇
  2008年   37篇
  2007年   33篇
  2006年   23篇
  2005年   36篇
  2004年   32篇
  2003年   20篇
  2002年   20篇
  2001年   18篇
  2000年   16篇
  1999年   14篇
  1998年   7篇
  1997年   3篇
  1996年   11篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   11篇
  1990年   13篇
  1989年   11篇
  1988年   20篇
  1987年   16篇
  1986年   10篇
  1985年   7篇
  1984年   11篇
  1983年   4篇
  1982年   12篇
  1981年   10篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1971年   4篇
  1970年   4篇
  1963年   2篇
  1913年   2篇
排序方式: 共有725条查询结果,搜索用时 406 毫秒
211.
Nipah virus (NiV), a highly pathogenic member of the family Paramyxoviridae, encodes the surface glycoproteins F and G. Since internalization of the NiV envelope proteins from the cell surface might be of functional importance for viral pathogenesis either by regulating cytopathogenicity or by modulating recognition of infected cells by the immune system, we analyzed the endocytosis of the NiV F and G proteins. Interestingly, we found both glycoproteins to be internalized in infected and transfected cells. As endocytosis is normally mediated by tyrosine- or dileucine-dependent signals in the cytoplasmic tails of transmembrane proteins, all potential internalization signals in the NiV glycoproteins were mutated. Whereas the G protein appeared to be constitutively internalized with the bulk flow during membrane turnover, uptake of the F protein was found to be signal mediated. F endocytosis clearly depended on a membrane-proximal YXXPhi motif and was found to be of functional importance for the biological activity of the protein.  相似文献   
212.
p53, p63 and p73--solos, alliances and feuds among family members   总被引:7,自引:0,他引:7  
p53 controls crucial stress responses that play a major role in preventing malignant transformation. Hence, inactivation of p53 is the single most common genetic defect in human cancer. With the recent discovery of two close structural homologs, p63 en p73, we are getting a broader view of a fascinating gene family that links developmental biology with tumor biology. While unique roles are apparent for each of these genes, intimate biochemical cross-talk among family members suggests a functional network that might influence many different aspects of individual gene action. The most interesting part of this family network derives from the fact that the p63 and p73 genes are based on the "two-genes-in-one" idea, encoding both agonist and antagonist in the same open reading frame. In this review, we attempt to present an overview of the current status of this fast moving field.  相似文献   
213.
214.
p63 and p73: roles in development and tumor formation   总被引:12,自引:0,他引:12  
The tumor suppressor p53 is critically important in the cellular damage response and is the founding member of a family of proteins. All three genes regulate cell cycle and apoptosis after DNA damage. However, despite a remarkable structural and partly functional similarity among p53, p63, and p73, mouse knockout studies revealed an unexpected functional diversity among them. p63 and p73 knockouts exhibit severe developmental abnormalities but no increased cancer susceptibility, whereas this picture is reversed for p53 knockouts. Neither p63 nor p73 is the target of inactivating mutations in human cancers. Genomic organization is more complex in p63 and p73, largely the result of an alternative internal promoter generating NH2-terminally deleted dominant-negative proteins that engage in inhibitory circuits within the family. Deregulated dominant-negative p73 isoforms might play an active oncogenic role in some human cancers. Moreover, COOH-terminal extensions specific for p63 and p73 enable further unique protein-protein interactions with regulatory pathways involved in development, differentiation, proliferation, and damage response. Thus, p53 family proteins take on functions within a wide biological spectrum stretching from development (p63 and p73), DNA damage response via apoptosis and cell cycle arrest (p53, TAp63, and TAp73), chemosensitivity of tumors (p53 and TAp73), and immortalization and oncogenesis (DeltaNp73).  相似文献   
215.
216.
Oncogenes induce and activate endogenous p73 protein   总被引:5,自引:0,他引:5  
  相似文献   
217.
Sequence determinants and structural features of the RNA govern mRNA-ribosome interaction in bacteria. However, ribosomal recruitment to leaderless mRNAs, which start directly with the AUG start codon and do not bear a Shine-Dalgarno sequence like canonical mRNAs, does not appear to rely on 16S rRNA-mRNA interactions. Here, we have studied the effects of translation initiation factors IF2 and IF3 on 30S initiation at a 5'-terminal AUG and at a competing downstream canonical ribosome binding site. We show that IF2 affects the forward kinetics of 30S initiation complex formation at the 5'-terminal AUG as well as the stability of these complexes. Moreover, the IF2:IF3 molar ratio was found to play a decisive role in translation initiation of a leaderless mRNA both in vitro and in vivo indicating that the translational efficiency of an mRNA is not only intrinsically determined but can be altered depending on the availability of components of the translational machinery.  相似文献   
218.
TWEAK is a newly identified member of the Tumor Necrosis Factor (TNF) family of proteins which are involved in many immunoinflammatory mechanisms. The putative role of TWEAK in inflammation was analyzed in mice treated with lipopolysaccharide (LPS), a strong inducer of the immuno-inflammatory responses. TWEAK mRNA rapidly disappeared in all the tissues tested. Analysis of LPS-treated thioglycolate-elicited peritoneal macrophages revealed that the rapid loss of TWEAK mRNA was due to its active destabilization. In chronic pathologies like autoimmune hemolytic anemia in the NZB mouse strain or systemic lupus erythematosus (SLE) in the BXSB mouse strain, TWEAK mRNA was shown to be reduced concomitantly to the development of chronic autoimmune diseases. These results demonstrated that TWEAK mRNA, contrary to TNF mRNA, is stable, ubiquitously distributed in tissues, and is down-regulated after LPS treatment or in chronic inflammation, suggesting that TWEAK could be an important factor, along with TNF, in acute and chronic inflammations.  相似文献   
219.
220.
Abstract. Normal (non-transformed) human mammary epithelial cell lines derived from reduction mammoplasties were analyzed by immunocytochemistry with more than 80 monoclonal antibodies (mAbs) and other specific reagents to tissue-specific and developmentally regulated antigens at different passage levels. A subpopulation of poorly differentiated, proliferating epithelial cells, corresponding to the 'selected' cell type of late passages, is shown to be characterized by a new marker, the histo-blood group antigen H type 2, probably carried on a membrane-bound glycolipid. These cells also express a number of other onco-developmental carbohydrate antigens [Ley, Lex, sialosyl-Lea, precursor of Thomsen Friedenreich antigen (Tn), but not Thomsen-Friedenreich antigen and sialosyl-Tn). Their cytokeratin (CK) phenotype, as assessed by reactivity with monospecific mAbs and two-dimensional gel electrophoresis, is CK 5, 6, 14 and 17, with CK 19 being consistently absent, and varying minor amounts of CK 7, 8 and 18, as well as 15 and 16. The reactivity of these cells with a panel of 11 mAbs specific for CK 18 varies considerably even after cloning, indicating heterogeneity of epitope expression or accessibility. Our data strongly suggest that the H type 2+ cells develop from the basal cell layer of the mammary gland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号