首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   83篇
  2023年   3篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   9篇
  2015年   28篇
  2014年   40篇
  2013年   35篇
  2012年   31篇
  2011年   39篇
  2010年   20篇
  2009年   16篇
  2008年   37篇
  2007年   33篇
  2006年   23篇
  2005年   36篇
  2004年   32篇
  2003年   20篇
  2002年   20篇
  2001年   18篇
  2000年   16篇
  1999年   14篇
  1998年   7篇
  1997年   3篇
  1996年   11篇
  1994年   6篇
  1993年   9篇
  1992年   5篇
  1991年   11篇
  1990年   13篇
  1989年   11篇
  1988年   20篇
  1987年   16篇
  1986年   10篇
  1985年   7篇
  1984年   11篇
  1983年   4篇
  1982年   12篇
  1981年   10篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   7篇
  1971年   4篇
  1970年   4篇
  1963年   2篇
  1913年   2篇
排序方式: 共有725条查询结果,搜索用时 625 毫秒
161.
It was recently found that the cytoplasmic butyryl-coenzyme A (butyryl-CoA) dehydrogenase-EtfAB complex from Clostridium kluyveri couples the exergonic reduction of crotonyl-CoA to butyryl-CoA with NADH and the endergonic reduction of ferredoxin with NADH via flavin-based electron bifurcation. We report here on a second cytoplasmic enzyme complex in C. kluyveri capable of energetic coupling via this novel mechanism. It was found that the purified iron-sulfur flavoprotein complex NfnAB couples the exergonic reduction of NADP+ with reduced ferredoxin (Fdred) and the endergonic reduction of NADP+ with NADH in a reversible reaction: Fdred2− + NADH + 2 NADP+ + H+ = Fdox + NAD+ + 2 NADPH. The role of this energy-converting enzyme complex in the ethanol-acetate fermentation of C. kluyveri is discussed.Clostridium kluyveri is unique in fermenting ethanol and acetate to butyrate, caproate, and H2 (reaction 1) and in deriving a large (30%) portion of its cell carbon from CO2. Both the energy metabolism and the pathways of biosynthesis have therefore been the subject of many investigations (for relevant literature, see references 12 and 27). (1)During growth of C. kluyveri on ethanol and acetate, approximately five ethanol and four acetate molecules are converted to three butyrate molecules and one caproate molecule (reaction 1a), and one ethanol molecule is oxidized to one acetate, one H+, and two H2 (reaction 1b) molecules (23, 31). How exergonic reaction 1a is coupled with endergonic reaction 1b and with ATP synthesis from ADP and Pi (ΔGo′ = +32 kJ/mol) has remained unclear for many years. (1a) (1b)We recently showed (12) that, in Clostridium kluyveri, the exergonic reduction of crotonyl-coenzyme A (crotonyl-CoA) (Eo′ = −10 mV) with NADH (Eo′ = −320 mV) involved in reaction 1a is coupled with the endergonic reduction of ferredoxin (Fdox) (Eo′ = −420 mV) with NADH (Eo′ = −320 mV) involved in reaction 1b via the recently proposed mechanism of flavin-based electron bifurcation (7). The coupling reaction is catalyzed by the cytoplasmic butyryl-CoA dehydrogenase-EtfAB complex (reaction 2) (12): (2)The reduced ferredoxin (Fdred2−) is assumed to be used for rereduction of NAD+ via a membrane-associated, proton-translocating ferredoxin:NAD oxidoreductase (RnfABCDEG) (reaction 3), and the proton motive force thus generated is assumed to drive the phosphorylation of ADP via a membrane-associated F1F0 ATP synthetase (reaction 4): (3) (4)The novel coupling mechanism represented by reactions 2 and 3 allowed for the first time the possibility of formulating a metabolic scheme for the ethanol-acetate fermentation that could account for the observed fermentation products and growth yields and thus for the observed ATP gains (27). One issue, however, remained open, namely, why the formation of butyrate from ethanol and acetate in the fermentation involves both an NADP+- and an NAD+-specific β-hydroxybutyryl-CoA dehydrogenase (16), considering that, in the oxidative part of the fermentation (ethanol oxidation to acetyl-CoA), only NADH is generated (8, 9, 13).The presence of a reduced ferredoxin:NADP+ oxidoreductase was proposed based on results of enzymatic studies performed 40 years ago. Cell extracts of Clostridium kluyveri were found to catalyze the formation of H2 from NADPH in a ferredoxin- and NAD+-dependent reaction (34). The results were interpreted to indicate that C. kluyveri contains a ferredoxin-dependent hydrogenase and an NADPH:ferredoxin oxidoreductase with transhydrogenase activity. H2 formation from NADPH was strictly dependent on the presence of NAD+ and was inhibited by NADH, inhibition being competitive with the presence of NAD+, indicating that ferredoxin reduction with NADPH is under the allosteric control of the NAD+/NADH couple. The cell extracts also catalyzed the NADH-dependent reduction of NADP+ with reduced ferredoxin (21, 34). Purification of the enzyme catalyzing these reactions was not achieved, and no function in the energy metabolism of C. kluyveri was assigned.In this communication, we report on the properties of the recombinant enzyme that catalyzes the NAD+-dependent reduction of ferredoxin with NADPH and the NADH-dependent reduction of NADP+ with reduced ferredoxin and show that the cytoplasmic heterodimeric enzyme couples the exergonic reduction of NADP+ with reduced ferredoxin with the endergonic reduction of NADP+ with NADH in a fully reversible reaction. The transhydrogenation reaction is endergonic, because in vivo the NADH/NAD+ ratio is generally near 0.3 and the NADPH/NADP+ ratio is generally above 1 (2, 30). (5)NADP+ reduction is most probably the physiological function of the enzyme, which is why we chose the abbreviation NfnAB (for NADH-dependent reduced ferredoxin:NADP+ oxidoreductase).  相似文献   
162.

Purpose

Previously, we developed a porcine model for Arterio Venous Graft (AVG) failure to allow assessment of new access strategies. This model was limited concerning graft length. In the present technical report, we describe a modification of our model allowing the assessment of long AVGs.

Technique

In 4 pigs, AVGs of 15 cm length were created bilaterally in a cross-over fashion between the carotid artery and the contralateral jugular vein. Two days (2 pigs) and two weeks (2 pigs) after AV shunting, graft patency was evaluated by angiography, showing all four grafts to be patent, with no sign of angiographic or macroscopic narrowing at the anastomoses sites.

Conclusions

In this modified pig AVG failure model, implantation of a bilateral cross-over long AVG is a feasible approach. The present model offers a suitable tool to study local interventions or compare various long graft designs aimed at improvement of AVG patency.  相似文献   
163.

Background

Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) have emerged in high-HIV-prevalence settings, which generally lack laboratory infrastructure for diagnosing TB drug resistance. Even where available, inherent delays with current drug-susceptibility testing (DST) methods result in clinical deterioration and ongoing transmission of MDR and XDR-TB. Identifying clinical predictors of drug resistance may aid in risk stratification for earlier treatment and infection control.

Methods

We performed a retrospective case-control study of patients with MDR (cases), XDR (cases) and drug-susceptible (controls) TB in a high-HIV-prevalence setting in South Africa to identify clinical and demographic risk factors for drug-resistant TB. Controls were selected in a 1∶1∶1 ratio and were not matched. We calculated odds ratios (OR) and performed multivariate logistic regression to identify independent predictors.

Results

We enrolled 116, 123 and 139 patients with drug-susceptible, MDR, and XDR-TB. More than 85% in all three patient groups were HIV-infected. In multivariate analysis, MDR and XDR-TB were each strongly associated with history of TB treatment failure (adjusted OR 51.7 [CI 6.6-403.7] and 51.5 [CI 6.4–414.0], respectively) and hospitalization more than 14 days (aOR 3.8 [CI 1.1–13.3] and 6.1 [CI 1.8–21.0], respectively). Prior default from TB treatment was not a risk factor for MDR or XDR-TB. HIV was a risk factor for XDR (aOR 8.2, CI 1.3–52.6), but not MDR-TB. Comparing XDR with MDR-TB patients, the only significant risk factor for XDR-TB was HIV infection (aOR 5.3, CI 1.0–27.6).

Discussion

In this high-HIV-prevalence and drug-resistant TB setting, a history of prolonged hospitalization and previous TB treatment failure were strong risk factors for both MDR and XDR-TB. Given high mortality observed among patients with HIV and drug-resistant TB co-infection, previously treated and hospitalized patients should be considered for empiric second-line TB therapy while awaiting confirmatory DST results in settings with a high-burden of MDR/XDR-TB.  相似文献   
164.
165.
Zusammenfassung Aus Wasser der Ostsee wurde ein Bakterium isoliert, das durch Knospung sowie durch Mehrfachteilung kokkenähnlicher Einheiten eine Vielfalt von Zellformen und-aggregaten ausbildet, wie sie bisher in keiner Bakteriengattung bekannt sind. Es handelt sich um einen heterotrophen beweglichen grampositiven Brackwasserorganismus. Die vorliegende Arbeit behandelt morphologische, cytologische und physiologische Merkmale sowie die mögliche taxonomische Stellung des Organismus.
A new budding bacterium from the Baltic Sea
Summary From water of the Baltic Sea a bacterium has been isolated which reproduces by budding and by multiple fission of coccoid units, thus giving rise to a variety of cell forms and aggregates, which so far have not been known in any bacterial genus. It is a heterotrophic, motile, grampositive organism, which grows best in brackish water media. This paper deals with morphological, cytological, and physiological characters and with the possible taxonomic position of the organism.
  相似文献   
166.
Appropriate subcellular localization is crucial for regulating p53 function. We show that p53 export is mediated by a highly conserved leucine-rich nuclear export signal (NES) located in its tetramerization domain. Mutation of NES residues prevented p53 export and hampered tetramer formation. Although the p53-binding protein MDM2 has an NES and has been proposed to mediate p53 export, we show that the intrinsic p53 NES is both necessary and sufficient for export. This report also demonstrates that the cytoplasmic localization of p53 in neuroblastoma cells is due to its hyperactive nuclear export: p53 in these cells can be trapped in the nucleus by the export-inhibiting drug leptomycin B or by binding a p53-tetramerization domain peptide that masks the NES. We propose a model in which regulated p53 tetramerization occludes its NES, thereby ensuring nuclear retention of the DNA-binding form. We suggest that attenuation of p53 function involves the conversion of tetramers into monomers or dimers, in which the NES is exposed to the proteins which mediate their export to the cytoplasm.  相似文献   
167.
The interaction between S-layer protein SbsB and the secondary cell wall polymer (SCWP) of Geobacillus stearothermophilus PV72/p2 was investigated by real-time surface plasmon resonance biosensor technology. The SCWP is an acidic polysaccharide that contains N-acetylglucosamine, N-acetylmannosamine, and pyruvic acid. For interaction studies, recombinant SbsB (rSbsB) and two truncated forms consisting of either the S-layer-like homology (SLH) domain (3SLH) or the residual part of SbsB were used. Independent of the setup, the data showed that the SLH domain was exclusively responsible for SCWP binding. The interaction was found to be highly specific, since neither the peptidoglycan nor SCWPs from other organisms nor other polysaccharides were recognized. Data analysis from that setup in which 3SLH was immobilized on a sensor chip and SCWP represented the soluble analyte was done in accordance with a model that describes binding of a bivalent analyte to a fixed ligand in terms of an overall affinity for all binding sites. The measured data revealed the presence of at least two binding sites on a single SCWP molecule with a distance of about 14 nm and an overall Kd of 7.7 x 10(-7) M. Analysis of data from the inverted setup in which the SCWP was immobilized on a sensor chip was done in accordance with an extension of the heterogeneous-ligand model, which indicated the existence of three binding sites with low (Kd = 2.6 x 10(-5) M), medium (Kd = 6.1 x 10(-8) M), and high (Kd = 6.7 x 10(-11) M) affinities. Since in this setup 3SLH was the soluble analyte and the presence of small amounts of oligomers in even monomeric protein solutions cannot be excluded, the high-affinity binding site may result from avidity effects caused by binding of at least dimeric 3SLH. Solution competition assays performed with both setups confirmed the specificity of the protein-carbohydrate interaction investigated.  相似文献   
168.
The ring-shaped RNA chaperone Hfq has recently received much attention owing to its multiple roles in RNA metabolism. In this study we have performed a mutational analysis of the Escherichia coli hfq gene, and have studied the effects of amino acid substitutions at several positions in the Hfq protein as well as of C-terminal truncations on its role in phage Qbeta replication, in repression of a target mRNA, and on the stability of the small regulatory RNA DsrA. These functional studies provided insights into the interaction of Hfq with RNA and suggested a role for the C-terminus of Hfq in DsrA stability.  相似文献   
169.
The structures of the O-polysaccharides of the lipopolysaccharides of Proteus mirabilis O7 and O49 were determined by chemical methods, mass spectrometry, including MS/MS, and NMR spectroscopy, including experiments run in an H2O/D2O mixture to reveal correlations for NH protons. The O-polysaccharides were found to contain N-carboxyacetyl (malonyl) and N-(3-carboxypropanoyl) (succinyl) derivatives of 4-amino-4,6-dideoxyglucose (4-amino-4-deoxyquinovose, Qui4N), respectively. The behavior of Qui4N derivatives with the dicarboxylic acids under conditions of acid hydrolysis and methanolysis was studied using GLC-MS.  相似文献   
170.
The lipopolysaccharide of Pseudomonas aeruginosa O-12 was studied by strong alkaline and mild acid degradations and dephosphorylation followed by fractionation of the products by GPC and high-performance anion-exchange chromatography and analyses by ESI FT-MS and NMR spectroscopy. The structures of the lipopolysaccharide core and the O-polysaccharide repeating unit were elucidated and the site and the configuration of the linkage between the O-polysaccharide and the core established. The core was found to be randomly O-acetylated, most O-acetyl groups being located on the terminal rhamnose residue of the outer core region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号