首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   61篇
  国内免费   44篇
  710篇
  2024年   1篇
  2023年   6篇
  2022年   15篇
  2021年   37篇
  2020年   15篇
  2019年   14篇
  2018年   13篇
  2017年   10篇
  2016年   19篇
  2015年   44篇
  2014年   48篇
  2013年   47篇
  2012年   50篇
  2011年   41篇
  2010年   46篇
  2009年   32篇
  2008年   37篇
  2007年   24篇
  2006年   41篇
  2005年   25篇
  2004年   14篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   8篇
  1989年   4篇
  1988年   8篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1969年   2篇
排序方式: 共有710条查询结果,搜索用时 0 毫秒
581.
Pan-genomes from large natural populations can capture genetic diversity and reveal genomic complexity. Using de novo long-read assembly, we generated a graph-based super pan-genome of rice consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. Our pan-genome reveals extensive structural variations (SVs) and gene presence/absence variations. Additionally, our pan-genome enables the accurate identification of nucleotide-binding leucine-rich repeat genes and characterization of their inter- and intraspecific diversity. Moreover, we uncovered grain weight-associated SVs which specify traits by affecting the expression of their nearby genes. We characterized genetic variants associated with submergence tolerance, seed shattering and plant architecture and found independent selection for a common set of genes that drove adaptation and domestication in Asian and African rice. This super pan-genome facilitates pinpointing of lineage-specific haplotypes for trait-associated genes and provides insights into the evolutionary events that have shaped the genomic architecture of various rice species.Subject terms: Structural variation, Comparative genomics  相似文献   
582.
Hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) function as the signaling molecules in plants responding to salt stresses. The present study presents a signaling network involving H2S and H2O2 in salt resistance pathway of the Arabidopsis root. Arabidopsis roots were sensitive to 100 mM NaCl treatment, which displayed a great increase in electrolyte leakage (EL) and Na+/K+ ratio under salt stress. The treatment of H2S donors sodium hydrosulfide (NaHS) enhanced the salt tolerance by maintaining a lower Na+/K+ ratio. In addition, the inhibition of root growth under salt stress was removed by H2S. Further studies indicated that H2O2 was involved in H2S-induced salt tolerance pathway. H2S induced the production of the endogenous H2O2 via regulating the activities of glucose-6-phosphate dehydrogenase (G6PDH) and plasma membrane (PM) NADPH oxidase, with the treatment with dimethylthiourea (DMTU, an ROS scavenger), diphenylene iodonium (DPI, a PM NADPH oxidase inhibitor), or glycerol (G6PDH inhibitor) removing the effect of H2S. Treatment with amiloride (an inhibitor of PM Na+/H+ antiporter) and vanadate (an inhibitor of PM H+-ATPase) also inhibited the activity of H2S on Na+/K+ ratio. Through an analysis of quantitative real-time polymerase chain reaction and Western blot, we found that H2S promoted the genes expression and the phosphorylation level of PM H+-ATPase and Na+/H+ antiporter protein level. However, when the endogenous H2O2 level was inhibited by DPI or DMTU, the effect of H2S on the PM Na+/H+ antiporter system was removed. Taken together, H2S maintains ion homeostasis in the H2O2-dependent manner in salt-stress Arabidopsis root.  相似文献   
583.
A stereoselective high‐performance liquid chromatographic (HPLC) method was developed and validated to determine S‐(?)‐ and R‐(+)‐propranolol in rat serum. Enantiomeric resolution was achieved on cellulose tris(3,5‐dimethylphenylcarbamate) immobilized onto spherical porous silica chiral stationary phase (CSP) known as Chiralpak IB. A simple analytical method was validated using a mobile phase consisted of n‐hexane‐ethanol‐triethylamine (95:5:0.4%, v/v/v) at a flow rate of 0.6 mL min‐1 and fluorescence detection set at excitation/emission wavelengths 290/375 nm. The calibration curves were linear over the range of 10–400 ng mL‐1 (R = 0.999) for each enantiomer with a detection limit of 3 ng mL‐1. The proposed method was validated in compliance with ICH guidelines in terms of linearity, accuracy, precision, limits of detection and quantitation, and other aspects of analytical validation. Actual quantification could be made for propranolol isomers in serum obtained from rats that had been intraperitoneally (i.p.) administered a single dose of the drug. The proposed method established in this study is simple and sensitive enough to be adopted in the fields of clinical and forensic toxicology. Molecular modeling studies including energy minimization and docking studies were first performed to illustrate the mechanism by which the active enantiomer binds to the β‐adrenergic receptor and second to find a suitable interpretation of how both enantiomers are interacting with cellulose tris(3,5‐dimethylphenylcarbamate) CSP during the process of resolution. The latter interaction was demonstrated by calculating the binding affinities and interaction distances between propranolol enantiomers and chiral selector. Chirality 26:194–199, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
584.
人类白细胞抗原(HLA)的检测最初用于器官移植,但近年来,HLA作为免疫遗传基因在与免疫调节有关的疾病中所扮演的重要角色愈来愈受到重视。本就HLA的检测方法以及与某些临床疾病的关系加以论述。  相似文献   
585.
Src family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway. However, in the presence of functional PTEN, Src reverses the activity of PTEN, resulting in an increase in AKT phosphorylation. Activated Src reduces the ability of PTEN to dephosphorylate phosphatidylinositols in micelles and promotes AKT translocation to cellular plasma membranes but does not alter PTEN activity toward water-soluble phosphatidylinositols. Thus, Src may alter the capacity of the PTEN C2 domain to bind cellular membranes rather than directly interfering with PTEN enzymatic activity. Tyrosine phosphorylation of PTEN is increased in breast cancer cells treated with pervanadate, suggesting that PTEN contains sites for tyrosine phosphorylation. Src kinase inhibitors markedly decreased pervanadate-mediated tyrosine phosphorylation of PTEN. Further, expression of activated Src results in marked tyrosine phosphorylation of PTEN. SHP-1, a SH2 domain-containing protein-tyrosine phosphatase, selectively binds and dephosphorylates PTEN in Src transfected cells. Both Src inhibitors and SHP-1 overexpression reverse Src-induced loss of PTEN function. Coexpression of PTEN with activated Src reduces the stability of PTEN. Taken together, the data indicate that activated Src inhibits PTEN function leading to alterations in signaling through the PI3K/AKT pathway.  相似文献   
586.
587.
3beta-Hydroxy-12-oleanen-27-oic acid (ATA) was an antitumor active oleanane-type triterpenoid from the rhizomes of Astilbe chinensis. ATA was structurally very similar to oleanolic acid, with the only difference being interchange of the carboxyl and methyl group at the C-14 and C-17 positions. Oleanane-type triterpene with a carboxyl group at C-14 is present in a limited number of natural resources. ATA was found to exhibit more distinctive cytotoxicity toward human cervical squamous carcinoma HeLa cells than oleanolic acid, which suggested that the position of the carboxyl group significantly affects the cytotoxicity of oleanane-type pentacyclic triterpenes with a carboxyl group. The biological mechanism responsible for the cytotoxicity of ATA is not yet well understood. In this study, we investigated the induction of apoptosis in HeLa cells by ATA and the putative pathways of its actions. ATA induced a marked concentration- and time-dependent inhibition of HeLa cell proliferation, and reduced the protein content in HeLa cells. ATA-treated HeLa displayed typical morphological apoptotic characteristics and formation of DNA ladders in agarose gel electrophoresis. Flow cytometric analysis showed that the HeLa cell cycle was arrested in the G(0)/G(1) phase by ATA, and the apoptotic rate of HeLa cells treated with ATA 20 microg/mL for 48 h was 22.63 +/- 1.65%. Meanwhile, ATA increased the expression of Bax, decreased the expression of Bcl-2, and lowered the DeltaPsi(m). DEVD-CHO 2 microM could increase the viability of ATA-treated HeLa cells. These results indicate that ATA could significantly induce cell apoptosis through down-regulating Bcl-2 expression, up-regulating Bax expression, lowering DeltaPsi(m), and activating the caspase-3 pathway, and should be useful in the search for new potential anti-tumor agents and for developing semisynthetic oleanane-type triterpene derivatives with anti-tumor activity.  相似文献   
588.
采用分子生物学的方法构建了含Bacillus subtilis glnA基因的重组菌株Escherichia coli DH5α(pMD19-glnA),用毛细管电泳和核磁共振对重组菌株的转化谷氨酸的产物进行定性鉴定,并进一步通过荧光定量RT-PCR测定谷氨酰胺合成酶基因(glnA)mRNA水平的相对表达量,最后用SDS-聚丙烯酰胺凝胶电泳对蛋白的相对表达情况进行了分析。结果表明重组菌株并没有增加谷氨酰胺的产量,而是明显增加了γ-氨基丁酸(GABA)的产量。实验表明重组菌株中的glnA基因可以正常转录,但是谷氨酰胺合成酶的蛋白表达量并没有增加。这种外源基因干扰大肠杆菌代谢的现象值得进一步研究。  相似文献   
589.
目的直接从实验豚鼠基因组DNA中筛选获得微卫星分子标记。方法应用磁珠和生物素标记的微卫星探针与豚鼠基因组酶切片段杂交,捕获200~1000 bp含有微卫星序列的DNA片段,连接到pMD-18V载体中,转化到感受态细胞E.coli DH5α中构建富集微卫星序列的小片段插入文库。然后用PCR法进行筛选。结果从约2000个转化子中获得240个阳性克隆。对其中98个进行了测序,并成功设计豚鼠微卫星引物17对。结论经过优化的磁珠富集法能够稳定、高效地获得豚鼠微卫星标记。本研究获得的微卫星位点将成为豚鼠遗传学研究的有力工具。  相似文献   
590.
Growth hormone receptor (GHR), the cognate receptor of growth hormone (GH), is a membrane bound receptor that belongs to the class I cytokine receptor superfamily. GH binding GHR induces cell differentiation and maturation, initiates the anabolism inside the cells and promotes cell proliferation. Recently, GHR has been reported to be associated with various types of cancer. However, the underlying mechanism of GHR in gastric cancer has not been defined. Our results showed that silence of GHR inhibited the growth of SGC-7901 and MGC-803 cells, and tumour development in mouse xenograft model. Flow cytometry showed that GHR knockout significantly stimulated gastric cancer cell apoptosis and caused G1 cell cycle arrest, which was also verified by Western blot that GHR deficiency induced the protein level of cleaved-PARP, a valuable marker of apoptosis. In addition, GHR deficiency inhibited the activation of PI3K/AKT signalling pathway. On the basis of the results, that GHR regulates gastric cancer cell growth and apoptosis through controlling G1 cell cycle progression via mediating PI3K/AKT signalling pathway. These findings provide a novel understanding for the role of GHR in gastric cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号