首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   141篇
  1729篇
  2023年   11篇
  2022年   12篇
  2021年   25篇
  2020年   13篇
  2019年   19篇
  2018年   12篇
  2017年   19篇
  2016年   35篇
  2015年   59篇
  2014年   50篇
  2013年   83篇
  2012年   103篇
  2011年   126篇
  2010年   72篇
  2009年   60篇
  2008年   104篇
  2007年   96篇
  2006年   99篇
  2005年   88篇
  2004年   83篇
  2003年   105篇
  2002年   86篇
  2001年   17篇
  2000年   8篇
  1999年   17篇
  1998年   19篇
  1997年   18篇
  1996年   9篇
  1995年   14篇
  1994年   18篇
  1993年   24篇
  1992年   15篇
  1991年   9篇
  1990年   15篇
  1989年   11篇
  1988年   12篇
  1987年   8篇
  1986年   12篇
  1985年   10篇
  1984年   9篇
  1983年   23篇
  1982年   20篇
  1981年   12篇
  1980年   11篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1975年   7篇
  1973年   5篇
  1970年   6篇
排序方式: 共有1729条查询结果,搜索用时 0 毫秒
91.
Photocatalytic inhibition of microbial adhesion by anodized titanium   总被引:1,自引:0,他引:1  
Biofouling is one of the concerns in the use of titanium for seawater cooled condensers of power plants. Earlier studies have shown that anodized titanium and its alloys with a thin film of anatase (TiO(2)) on its surface can inhibit attachment of Pseudomonas sp. when illuminated with near-UV light (350 - 380 nm). In the present study, a comparison of the photocatalytic inhibition of microbial attachment on titanium surfaces anodized at different voltages was carried out. Thin films of anatase of varying thickness were produced on titanium grade-2 by anodizing in dilute orthophosphoric acid solution at 30 V, 50 V and 100 V. The photocatalytic efficiency of these anodized surfaces was measured by the methylene blue degradation method. The anodised surfaces were exposed to liquid cultures of Gram-negative Pseudomonas sp., Gram-positive Micrococcus sp. and to a mixed algal culture. Photocatalytic inhibition of microbial attachment was maximum on the titanium surface anodized at 30 V, followed by the surface anodized at 50 V and then at 100 V. The photocatalytic inhibition of microbial attachment was also found to be dependent on the cell wall characteristics of the organism. The Gram-negative Pseudomonas sp. with a lipoproteinaceous outer membrane was the most susceptible to the photocatalytic effect, while the Gram-positive Micrococcus sp. with peptidoglycan cell wall showed moderate susceptibility and the algae with siliceous cell wall showed no susceptibility at all.  相似文献   
92.
93.
94.
The use of individually ventilated caging (IVC) to house mice presents new challenges for effective microbiological monitoring. Methods that exploit the characteristics of IVC have been developed, but to the authors' knowledge, their efficacy has not been systematically investigated. Air exhausted from the IVC rack can be monitored, using sentinels housed in cages that receive rack exhaust air as their supply air, or using filters placed on the exhaust air port. To aid laboratory animal personnel in making informed decisions about effective methods for microbiological monitoring of mice in IVC, the efficacy of air monitoring methods was compared with that of contact and soiled bedding sentinel monitoring. Mice were infected with mouse hepatitis virus (MHV), mouse parvovirus (MPV), murine rotavirus (agent of epizootic diarrhea of mice [EDIM]), Sendai virus (SV), or Helicobacter spp. All agents were detected using contact sentinels. Mouse hepatitis virus was effectively detected in air and soiled bedding sentinels, and SV was detected in air sentinels only. Mouse parvovirus and Helicobacter spp. were transmitted in soiled bedding, but the efficacy of transfer was dependent on the frequency and dilution of soiled bedding transferred. Results were similar when the IVC rack was operated under positive or negative air pressure. Filters were more effective at detecting MHV and SV than they were at detecting MPV. Exposure of sentinels or filters to exhaust air was effective at detecting several infectious agents, and use of these methods could increase the efficacy of microbiological monitoring programs, especially if used with soiled bedding sentinels. In contemporary mouse colonies, a multi-faceted approach to microbiological monitoring is recommended.  相似文献   
95.
We performed studies to determine whether chronic hypoxia impairs nitric oxide (NO) signaling in resistance level pulmonary arteries (PAs) of newborn piglets. Piglets were maintained in room air (control) or hypoxia (11% O(2)) for either 3 (shorter exposure) or 10 (longer exposure) days. Responses of PAs to a nonselective NO synthase (NOS) antagonist, N(omega)-nitro-L-arginine methylester (L-NAME), a NOS-2-selective antagonist, aminoguanidine, and 7-nitroindazole, a NOS-1-selective antagonist, were measured. Levels of NOS isoforms and of two proteins involved in NOS signaling, heat shock protein (HSP) 90 and caveolin-1, were assessed in PA homogenates. PAs from all groups constricted to L-NAME but not to aminoguanidine or 7-nitroindazole. The magnitude of constriction to L-NAME was similar for PAs from control and hypoxic piglets of the shorter exposure period but was diminished for PAs from hypoxic compared with control piglets of the longer exposure period. NOS-3, HSP90, and caveolin-1 levels were similar in hypoxic and control PAs. These findings indicate that NOS-3, but not-NOS 2 or NOS-1, is involved with basal NO production in PAs from both control and hypoxic piglets. After 10 days of hypoxia, NO function is impaired in PAs despite preserved levels of NOS-3, HSP90, and caveolin-1. The development of NOS-3 dysfunction in resistance level PAs may contribute to the progression of chronic hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   
96.
We are developing rotavirus vaccines based on the VP6 protein of the human G1P[8] [corrected] [J. Virol. 73 (1999) 7574] CJN strain of rotavirus. One prototype candidate consisting of MBP::VP6::His6, a chimeric protein of maltose-binding protein, VP6 and hexahistidine, was expressed mainly as truncated polypeptides in Escherichia coli BL21(DE3) cells. A possible reason for this extensive truncation is the high frequencies of rare bacterial codons within the rotavirus VP6 gene. Expression of truncated recombinant VP6 was found to be reduced, and expression of complete VP6 protein was simultaneously increased, when the protein was expressed in Rosetta(DE3)pLacI E. coli cells that contain increased amounts of transfer RNAs for a selection of rare codons. The same observation was made when a synthetic codon-optimized CJN-VP6 gene was expressed in E. coli BL21 or Rosetta cells. To increase protein recovery, recombinant E. coli cells were treated with 8M urea. Denatured, full-length MBP::VP6::His6 protein was then purified and used for intranasal vaccination of BALB/c mice (2 doses administered with E. coli heat-labile toxin LT(R192G) as adjuvant). Following oral challenge with the G3P[16] [corrected] [J. Virol. 76 (2002) 560] EDIM strain of murine rotavirus, protection levels against fecal rotavirus shedding were comparable (P>0.05) between groups of mice immunized with denatured codon-optimized or native (not codon-optimized) immunogen with values ranging from 87 to 99%. These protection levels were also comparable to those found after immunization with non-denatured CJN VP6. Thus, expression of complete rotavirus VP6 protein was greatly enhanced by codon optimization, and the protection elicited was not affected by denaturation of recombinant VP6.  相似文献   
97.
The mechanisms by which proteins are targeted to the membrane of eukaryotic flagella and cilia are largely uncharacterized. We have identified a new family of small myristoylated proteins (SMPs) that are present in Leishmania spp and related trypanosomatid parasites. One of these proteins, termed SMP-1, is targeted to the Leishmania flagellum. SMP-1 is myristoylated and palmitoylated in vivo, and mutation of Gly-2 and Cys-3 residues showed that both fatty acids are required for flagellar localization. SMP-1 is associated with detergent-resistant membranes based on its recovery in the buoyant fraction after Triton X-100 extraction and sucrose density centrifugation and coextraction with the major surface glycolipids in Triton X-114. However, the flagellar localization of SMP-1 was not affected when sterol biosynthesis and the properties of detergent-resistant membranes were perturbed with ketoconazole. Remarkably, treatment of Leishmania with ketoconazole and myriocin (an inhibitor of sphingolipid biosynthesis) also had no affect on SMP-1 localization, despite causing the massive distension of the flagellum membrane and the partial or complete loss of internal axoneme and paraflagellar rod structures, respectively. These data suggest that flagellar membrane targeting of SMP-1 is not dependent on axonemal structures and that alterations in flagellar membrane lipid composition disrupt axoneme extension.  相似文献   
98.
CD28/B7 regulation of anti-CD3-mediated immunosuppression in vivo   总被引:4,自引:0,他引:4  
FcR-binding "classical" anti-CD3 mAb is a potent immunosuppressive drug that alters CD4(+) and CD8(+) T cell function in vivo via anergy induction and programmed cell death (PCD). Anti-CD3-mediated PCD was Fas independent but was mediated by the mitochondria-initiated apoptosis that was abrogated in Bcl-x(L)-transgenic T cells. The PCD was more pronounced in CD28-deficient mice consistent with defective Bcl-x(L) up-regulation. Residual T cells isolated from anti-CD3-treated wild-type, CD28(-/-), and Bcl-x(L)-transgenic mice were hyporesponsive. The hyporesponsiveness was more pronounced in CD28(-/-) and wild-type mice treated with anti-B7-2, suggesting that CD28 interaction with B7-2 regulates T cell responsiveness in anti-CD3-treated animals. Finally, anti-CD3 treatment led to indefinite cardiac allograft survival in wild-type but not Bcl-x(L) animals. Together these results implicate CD28/B7 signaling in the regulation of both anti-CD3-induced T cell depletion and hyporesponsiveness in vivo, but T cell depletion, not hyporesponsiveness, appears to be critical for anti-CD3 mAb-mediated long-term immune regulation.  相似文献   
99.
The Ikaros gene is alternately spliced to generate multiple DNA-binding and nonbinding isoforms that have been implicated as regulators of hematopoiesis, particularly in the lymphoid lineages. Although early reports of Ikaros mutant mice focused on lymphoid defects, these mice also show significant myeloid, erythroid, and stem cell defects. However, the specific Ikaros proteins expressed in these cells have not been determined. We recently described Ikaros-x (Ikx), a new Ikaros isoform that is the predominant Ikaros protein in normal human hematopoietic cells. In this study, we report that the Ikx protein is selectively expressed in human myeloid lineage cells, while Ik1 predominates in the lymphoid and erythroid lineages. Both Ik1 and Ikx proteins are expressed in early human hematopoietic cells (Lin(-)CD34(+)). Under culture conditions that promote specific lineage differentiation, Ikx is up-regulated during myeloid differentiation but down-regulated during lymphoid differentiation from human Lin(-)CD34(+) cells. We show that Ikx and other novel Ikaros splice variants identified in human studies are also expressed in murine bone marrow. In mice, as in humans, the Ikx protein is selectively expressed in the myeloid lineage. Our studies suggest that Ikaros proteins function in myeloid, as well as lymphoid, differentiation and that specific Ikaros isoforms may play a role in regulating lineage commitment decisions in mice and humans.  相似文献   
100.
Because the MAPK pathway plays important roles in cell proliferation and inhibition of apoptosis, this pathway has emerged as a potential therapeutic target for solid tumors and leukemia. At the present time there is little information about activation of this pathway and the consequences of its inhibition in acute lymphocytic leukemia cells (ALL). In the present study, constitutive MAPK pathway activation, as evidenced by phosphorylation of ERK1 and ERK2, was observed in 8 of 8 human lymphoid cell lines and 33% (8:24) of pretreatment ALL bone marrows. Inhibition of this pathway by the MEK inhibitors CI-1040 and PD098059 induced apoptosis through a unique pathway involving dephosphorylation and aggregation of Fas-associated death domain protein followed by death receptor-independent caspase-8 activation. Jurkat cell variants lacking Fas-associated death domain protein or procaspase-8 were resistant to CI-1040-induced apoptosis, as were Jurkat or Molt3 cells treated with the O-methyl ester of the caspase-8 inhibitor N-(Nalpha-benzyloxycarbonylisoleucylglutamyl) aspartate fluoromethyl ketone. In contrast, CI-1040-induced apoptosis was unaffected by blocking anti-Fas antibody, soluble tumor necrosis factor-alpha-related apoptosis-inducing ligand decoy receptor, or transfection with cDNA encoding the anti-apoptotic Bcl-2 family member Mcl-1 or dominant negative caspase-9. Collectively, these results identify the MAPK pathway as a potential therapeutic target in ALL and delineate a mechanism by which MEK inhibition triggers apoptosis in ALL cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号