首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1960篇
  免费   178篇
  2138篇
  2023年   12篇
  2022年   14篇
  2021年   31篇
  2020年   17篇
  2019年   22篇
  2018年   15篇
  2017年   24篇
  2016年   49篇
  2015年   79篇
  2014年   72篇
  2013年   103篇
  2012年   122篇
  2011年   144篇
  2010年   88篇
  2009年   72篇
  2008年   120篇
  2007年   112篇
  2006年   114篇
  2005年   100篇
  2004年   99篇
  2003年   116篇
  2002年   100篇
  2001年   32篇
  2000年   18篇
  1999年   22篇
  1998年   20篇
  1997年   23篇
  1996年   11篇
  1995年   18篇
  1994年   20篇
  1993年   36篇
  1992年   18篇
  1991年   22篇
  1990年   24篇
  1989年   15篇
  1988年   19篇
  1987年   10篇
  1986年   16篇
  1985年   16篇
  1984年   13篇
  1983年   33篇
  1982年   21篇
  1981年   14篇
  1980年   13篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1975年   8篇
  1970年   7篇
  1969年   5篇
排序方式: 共有2138条查询结果,搜索用时 15 毫秒
151.
152.

Aims

Our aims were to characterize the fate of leaf-litter-derived nitrogen in the plant-soil-microbe system of a temperate beech forest of Southern Germany and to identify its importance for N nutrition of beech seedlings.

Methods

15N-labelled leaf litter was traced in situ into abiotic and biotic N pools in mineral soil as well as into beech seedlings and mycorrhizal root tips over three growing seasons.

Results

There was a rapid transfer of 15N into the mineral soil already 21 days after tracer application with soil microbial biomass initially representing the dominant litter-N sink. However, 15N recovery in non-extractable soil N pools strongly increased over time and subsequently became the dominant 15N sink. Recovery in plant biomass accounted for only 0.025 % of 15N excess after 876 days. After three growing seasons, 15N excess recovery was characterized by the following sequence: non-extractable soil N?>>?extractable soil N including microbial biomass?>>?plant biomass?>?ectomycorrhizal root tips.

Conclusions

After quick vertical dislocation and cycling through microbial N pools, there was a rapid stabilization of leaf-litter-derived N in non-extractable N pools of the mineral soil. Very low 15N recovery in beech seedlings suggests a high importance of other N sources such as root litter for N nutrition of beech understorey.  相似文献   
153.
Primary renal hypouricemia is a genetic disorder characterized by defective renal uric acid (UA) reabsorption with complications such as nephrolithiasis and exercise-induced acute renal failure. The known causes are: defects in the SLC22A12 gene, encoding the human urate transporter 1 (hURAT1), and also impairment of voltage urate transporter (URATv1), encoded by SLC2A9 (GLUT9) gene. Diagnosis is based on hypouricemia (<119 μmol/L) and increased fractional excretion of UA (>10%). To date, the cases with mutations in hURAT1 gene have been reported in East Asia only. More than 100 Japanese patients have been described. Hypouricemia is sometimes overlooked; therefore, we have set up the flowchart for this disorder. The patients were selected for molecular analysis from 620 Czech hypouricemic patients. Secondary causes of hyperuricosuric hypouricemia were excluded. The estimations of (1) serum UA, (2) excretion fraction of UA, and (3) analysis of hURAT1 and URATv1 genes follow. Three transitions and one deletion (four times) in SLC22A12 gene and one nucleotide insertion in SLC2A9 gene in seven Czech patients were found. Three patients had acute renal failure and urate nephrolithiasis. In addition, five nonsynonymous sequence variants and three nonsynonymous sequence variants in SLC2A9 gene were found in two UK patients suffering from acute renal failure. Our finding of the defects in SLC22A12 and SLC2A9 genes gives further evidence of the causative genes of primary renal hypouricemia and supports their important role in regulation of serum urate levels in humans.  相似文献   
154.
Bridges HR  Bill E  Hirst J 《Biochemistry》2012,51(1):149-158
In mitochondria, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. It contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters that transfer the electrons to quinone. Understanding electron transfer in complex I requires spectroscopic and structural data to be combined to reveal the properties of individual clusters and of the ensemble. EPR studies on complex I from Bos taurus have established that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster chain extending from the flavin) are (at least partially) reduced by NADH. The other three clusters, positions 4 and 6 plus a cluster on the other side of the flavin, are not observed in EPR spectra from the NADH-reduced enzyme: they may remain oxidized, have unusual or coupled spin states, or their EPR signals may be too fast relaxing. Here, we use M?ssbauer spectroscopy on (57)Fe-labeled complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and only the terminal 4Fe cluster (position 7) is fully reduced. Together with the EPR analyses, our results reveal an alternating profile of higher and lower potential clusters between the two active sites in complex I; they are not consistent with the consensus picture of a set of isopotential clusters. The implications for intramolecular electron transfer along the extended chain of cofactors in complex I are discussed.  相似文献   
155.
156.
157.
Leggate EJ  Hirst J 《Biochemistry》2005,44(18):7048-7058
Rieske [2Fe-2S] clusters have reduction potentials which vary by over 500 mV, and which are pH dependent. In the cytochrome bc(1) complex, the high-potential and low-pK values of the cluster may be important in the mechanism of quinol oxidation. Hydrogen bonds, from both side-chain and mainchain groups, are crucial for these properties, but solvent accessibility and a disulfide bond (present in only high-potential Rieske proteins) have been suggested to be important determinants also. Previous studies have addressed the hydrogen bonds, disulfide bond, and a leucine residue which may restrict solvent access, by mutations in the cytochrome bc(1) complex. However, influences on the complex (disruption of quinol binding and displacement of the Rieske domain) are difficult to deconvolute from intrinsic effects on the Rieske cluster. Here, the effects of similar mutations on cluster potential, pK values, and stability are characterized comprehensively in the isolated Rieske domain of the bovine protein. Hydrogen bonds from Ser163 and Tyr165 are important in increasing the reduction potential and decreasing the pK values. The disulfide has a limited effect on the redox properties, but is crucial for cluster stability, particularly in the oxidized state. Mutations of Leu142 had little effect on cluster potential, pK values, or stability, in contrast to the significant effects which were observed in the complex. The sum of the effects of all the mutated residues accounts for most of the differences between high- and low-potential Rieske proteins.  相似文献   
158.
Unionid (Mollusca: Unionidae) densities have declined dramatically throughout the Laurentian Great Lakes after the introduction of dreissenid mussels (Mollusca: Dreissenidae). Recent surveys in some Great Lake coastal wetlands have found abundant unionid populations, but the factors that reduce zebra mussels on unionids in these habitats are not well understood. In 2001–2002, we tested effects of predation and unionid burrowing on corbiculids, sphaeriids and dreissenids in a Great Lake coastal wetland in western Lake Erie. In one experiment, we reduced access by molluscivores using exclosures with two mesh sizes (1.3 cm × 1.3 cm; 5 cm × 10 cm) and sampled bivalves after 15 months. Small mesh exclosures had higher numbers of dreissenids, Corbicula fluminea and sphaeriids (54.9, 3.8, 22.6 individuals/m2, respectively) than large mesh exclosures (0.0, 1.13, 0.13 individuals/m2, respectively) or open controls (0.3, 1.0, 0.1 individuals/m2, respectively). Numbers of dreissenids on C. fluminea were higher in small mesh exclosures (3.8 dreissenids/Corbicula) than in large mesh exclosures (0.1 dreissenids/Corbicula) or cageless controls (0␣dreissenids/Corbicula). In a second experiment, we held two species of live unionids (Leptodea fragilis, Quadrula quadrula) and immobile Pyganodon grandis shells in exclosures (2.5 cm × 2.5 cm mesh) with either 5 cm, 10 cm, or 20 cm deep sediments and sampled bivalves after 2 months. There were fewer dreissenids on L. fragilis than P. grandis shells, but there was no difference in the number of dreissenids on Q. quadrula and P. grandis shells. Numbers of attached dreissenids were higher inside (189–494 dreissenids/unionid) than outside (8–11 dreissenids/unionid) exclosures, and densities of sphaeriid and C. fluminea clams were also higher inside (21.8, 4.7 individuals/m2, respectively) than outside (0.4, 0.9 individuals/m2, respectively) exclosures. Numbers of attached dreissenids were higher on unionids that could burrow below the sediments (20 cm depth) than unionids in shallow sediments (5 cm depth) for unexplained reasons. Our data suggest that molluscivores can play a pivotal role in limiting numbers of bivalves including dreissenids in coastal wetlands.  相似文献   
159.

Background

Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 μM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides.

Results

The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 μM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 μM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered.

Conclusions

A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0115-5) contains supplementary material, which is available to authorized users.  相似文献   
160.
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号