首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   146篇
  1734篇
  2023年   11篇
  2022年   12篇
  2021年   25篇
  2020年   13篇
  2019年   19篇
  2018年   12篇
  2017年   19篇
  2016年   35篇
  2015年   59篇
  2014年   50篇
  2013年   83篇
  2012年   103篇
  2011年   126篇
  2010年   72篇
  2009年   60篇
  2008年   104篇
  2007年   96篇
  2006年   99篇
  2005年   88篇
  2004年   83篇
  2003年   104篇
  2002年   86篇
  2001年   15篇
  2000年   11篇
  1999年   16篇
  1998年   19篇
  1997年   18篇
  1996年   10篇
  1995年   14篇
  1994年   18篇
  1993年   24篇
  1992年   14篇
  1991年   9篇
  1990年   14篇
  1989年   13篇
  1988年   13篇
  1987年   8篇
  1986年   12篇
  1985年   10篇
  1984年   9篇
  1983年   24篇
  1982年   20篇
  1981年   13篇
  1980年   13篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1975年   7篇
  1973年   5篇
  1970年   6篇
排序方式: 共有1734条查询结果,搜索用时 0 毫秒
81.
Novel benzazepine oxazolidinone antibacterials were synthesized and evaluated against clinically relevant susceptible and resistant organisms. The effect of ring nitrogen position and N-substitution on antibacterial activity is examined.  相似文献   
82.
Respiratory complex II (succinate:ubiquinone oxidoreductase) connects the tricarboxylic acid cycle to the electron transport chain in mitochondria and many prokaryotes. Complex II mutations have been linked to neurodegenerative diseases and metabolic defects in cancer. However, there is no convenient stoichiometric assay for the catalytic activity of complex II. Here, we present a simple, quantitative, real-time method to detect the production of fumarate from succinate by complex II that is easy to implement and applicable to the isolated enzyme, membrane preparations, and tissue homogenates. Our assay uses fumarate hydratase to convert fumarate to malate and uses oxaloacetate decarboxylating malic dehydrogenase to convert malate to pyruvate and to convert NADP+ to NADPH; the NADPH is detected spectrometrically. Simple protocols for the high-yield production of the two enzymes required are described; oxaloacetate decarboxylating malic dehydrogenase is also suitable for accurate determination of the activity of fumarate hydratase. Unlike existing spectrometric assay methods for complex II that rely on artificial electron acceptors (e.g., 2,6-dichlorophenolindophenol), our coupled assay is specific and stoichiometric (1:1 for succinate oxidation to NADPH formation), so it is suitable for comprehensive analyses of the catalysis and inhibition of succinate dehydrogenase activities in samples with both simple and complex compositions.  相似文献   
83.
A study was conducted to determine the changes that occur to proteolysis and related genes due to age, protein, and energy intake in high-yield broiler breeder hens (Gallus gallus). Cobb 700 broiler breeders were randomly assigned to one of six diets in a 2 × 3 factorial fashion. Two levels of energy (390 and 450 kcal/day) and three levels of protein (22, 24, and 26 g CP/day) were utilized. Protein turnover was determined in the left pectoralis at 22, 26, 31 and 44 weeks. Relative mRNA expression of calpain 2 (CAPN2), proteasome C2 subunit (PSMA1), and F box protein 32 (FBXO32) were determined via RT-PCR at 20, 25, and 44 weeks. Contrasts indicate fractional synthesis rate (FSR) and FBXO32 increase to a maximum at 25–26 weeks and a decrease thereafter. A significant drop in PSMA1 and FBXO32 was observed between 25 and 44 weeks and matched the decrease observed in FBR. No differences were detected in the levels of fractional synthesis and degradation, or the expression of CAPN2, PSMA1, and FBXO32, due to protein or energy intake. In summary, protein turnover was upregulated during the transition into sexual maturity and decreased thereafter. The observed changes in degradation appeared to be mediated by the ubiquitin–proteasome pathway.  相似文献   
84.
Rates of incorporation of [4,5-(3)H]leucine into insulin plus proinsulin, designated ;(pro)insulin', and total protein in rat pancreatic islets were measured. Glucose stimulates rates of total protein and (pro)insulin biosynthesis, but (pro)insulin biosynthesis is stimulated preferentially. Mannose and N-acetylglucosamine also stimulate (pro)insulin and total protein biosynthesis; inosine and dihydroxyacetone stimulate (pro)insulin biosynthesis specifically. Fructose does not stimulate (pro)insulin biosynthesis when tested alone, but does so in the presence of low concentrations of glucose, mannose or N-acetylglucosamine. Many glucose analogues do not stimulate (pro)insulin biosynthesis. Mannoheptulose inhibits synthesis of (pro)insulin and total protein stimulated by glucose or mannose but not by dihydroxyacetone, inosine or N-acetylglucosamine; phloretin (9mum) inhibits N-acetylglucosamine-stimulated (pro)insulin biosynthesis preferentially. The data are in agreement with the view that the same glucose-sensor mechanism may control both insulin release and biosynthesis, and ;substrate-site' model is suggested. The threshold for stimulation of biosynthesis of (pro)insulin and total protein is lower than that found for glucose-stimulated insulin release; moreover the biosynthetic response to an elevation of glucose concentration is slower than that found for insulin release. The physiological implication of these findings is discussed. Caffeine and isobutylmethylxanthine, at concentrations known to increase islet 3':5'-cyclic AMP and potentiate glucose-induced insulin release, were without effect on rates of glucose-stimulated (pro)insulin biosynthesis.  相似文献   
85.
86.

Introduction

Several studies have observed serum lipid changes during malaria infection in humans. All of them were focused at analysis of lipoproteins, not specific lipid molecules. The aim of our study was to identify novel patterns of lipid species in malaria infected patients using lipidomics profiling, to enhance diagnosis of malaria and to evaluate biochemical pathways activated during parasite infection.

Methods

Using a multivariate characterization approach, 60 samples were representatively selected, 20 from each category (mild, severe and controls) of the 690 study participants between age of 0.5–6 years. Lipids from patient’s plasma were extracted with chloroform/methanol mixture and subjected to lipid profiling with application of the LCMS-QTOF method.

Results

We observed a structured plasma lipid response among the malaria-infected patients as compared to healthy controls, demonstrated by higher levels of a majority of plasma lipids with the exception of even-chain length lysophosphatidylcholines and triglycerides with lower mass and higher saturation of the fatty acid chains. An inverse lipid profile relationship was observed when plasma lipids were correlated to parasitaemia.

Conclusions

This study demonstrates how mapping the full physiological lipid response in plasma from malaria-infected individuals can be used to understand biochemical processes during infection. It also gives insights to how the levels of these molecules relate to acute immune responses.
  相似文献   
87.
In this study, scalable, flame spray synthesis is utilized to develop defective ZnO nanomaterials for the concurrent generation of H2 and CO during electrochemical CO2 reduction reactions (CO2RR). The designed ZnO achieves an H2/CO ratio of ≈1 with a large current density (j) of 40 mA cm?2 during long‐term continuous reaction at a cell voltage of 2.6 V. Through in situ atomic pair distribution function analysis, the remarkable stability of these ZnO structures is explored, addressing the knowledge gap in understanding the dynamics of oxide catalysts during CO2RR. Through optimization of synthesis conditions, ZnO facets are modulated which are shown to affect reaction selectivity, in agreement with theoretical calculations. These findings and insights on synthetic manipulation of active sites in defective metal‐oxides can be used as guidelines to develop active catalysts for syngas production for renewable power‐to‐X to generate a range of fuels and chemicals.  相似文献   
88.
Background aimsLimited cell dose has hampered the use of cord blood transplantation (CBT) in adults. One method of minimizing nucleated cell loss in cord blood (CB) processing is to deplete or reduce plasma but not red blood cells - plasma depletion/reduction (PDR).MethodsThe nucleated cell loss of PDR was studied, and determined to be less than 0.1% in the discarded supernatant plasma fraction in validation experiments. After testing and archival sampling, the median nucleated cell recovery for PDR processing was 90%, and median CD34+ cell recovery 88%. In a CB bank inventory of 12 339 products with both pre- and post-processing total nucleated cells (TNC), PDR processing resulted in median post-processing TNC recoveries of 90.0% after testing and archival samples removal. Using the same 10 CB units divided into two halves, we compared directly the recovery of PDR against hydroxyethyl starch red cell reduction (RCR) for TNC, CD34+ cells and colony-forming units (CFU-GM, CFU-E, CFU-GEMM and total CFU) after parallel processing. We also compared the loss of very small embryonic-like stem cells (VSEL).ResultsWe demonstrated significantly higher recoveries using PDR for TNC (124%), CD34+ cells (121%), CFU-GM (225%), CFU-GEMM (201%), total CFU (186%) and VSEL (187%). The proportion of high TNC products was compared between 10 912 PDR and 38 819 RCR CB products and found to be 200% higher for products that had TNC ≥150 × 107 (P = 0.0001) for the PDR inventory.ConclusionsOur data indicate that PDR processing of CB provides a significantly more efficient usage of this valuable and scarce resource.  相似文献   
89.
We investigated the effects of removing near-stream Rhododendron and of the natural blowdown of canopy trees on nutrient export to streams in the southern Appalachians. Transects were instrumented on adjacent hillslopes in a first-order watershed at the Coweeta Hydrologic Laboratory (35°03′N, 83°25′W). Dissolved organic carbon (DOC), K+, Na+, Ca2+, Mg2+, NO3 -N, NH4 +-N, PO4 3−-P, and SO4 2− were measured for 2 years prior to disturbance. In August 1995, riparian Rhododendron on one hillslope was cut, removing 30% of total woody biomass. In October 1995, Hurricane Opal uprooted nine canopy trees on the other hillslope, downing 81% of the total woody biomass. Over the 3 years following the disturbance, soilwater concentrations of NO3 -N tripled on the cut hillslope. There were also small changes in soilwater DOC, SO4 2−, Ca2+, and Mg2+. However, no significant changes occurred in groundwater nutrient concentrations following Rhododendron removal. In contrast, soilwater NO3 -N on the storm-affected hillslope showed persistent 500-fold increases, groundwater NO3 -N increased four fold, and streamwater NO3 -N doubled. Significant changes also occurred in soilwater pH, DOC, SO4 2−, Ca2+, and Mg2+. There were no significant changes in microbial immobilization of soil nutrients or water outflow on the storm-affected hillslope. Our results suggest that Rhododendron thickets play a relatively minor role in controlling nutrient export to headwater streams. They further suggest that nutrient uptake by canopy trees is a key control on NO3 -N export in upland riparian zones, and that disruption of the root–soil connection in canopy trees via uprooting promotes significant nutrient loss to streams. Received 30 January 2001; accepted 25 July 2002.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号