首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   146篇
  1734篇
  2023年   11篇
  2022年   12篇
  2021年   25篇
  2020年   13篇
  2019年   19篇
  2018年   12篇
  2017年   19篇
  2016年   35篇
  2015年   59篇
  2014年   50篇
  2013年   83篇
  2012年   103篇
  2011年   126篇
  2010年   72篇
  2009年   60篇
  2008年   104篇
  2007年   96篇
  2006年   99篇
  2005年   88篇
  2004年   83篇
  2003年   104篇
  2002年   86篇
  2001年   15篇
  2000年   11篇
  1999年   16篇
  1998年   19篇
  1997年   18篇
  1996年   10篇
  1995年   14篇
  1994年   18篇
  1993年   24篇
  1992年   14篇
  1991年   9篇
  1990年   14篇
  1989年   13篇
  1988年   13篇
  1987年   8篇
  1986年   12篇
  1985年   10篇
  1984年   9篇
  1983年   24篇
  1982年   20篇
  1981年   13篇
  1980年   13篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1975年   7篇
  1973年   5篇
  1970年   6篇
排序方式: 共有1734条查询结果,搜索用时 0 毫秒
61.

Background

Vitamin K has been widely promoted as a supplement for decreasing bone loss in postmenopausal women, but the long-term benefits and potential harms are unknown. This study was conducted to determine whether daily high-dose vitamin K1 supplementation safely reduces bone loss, bone turnover, and fractures.

Methods and Findings

This single-center study was designed as a 2-y randomized, placebo-controlled, double-blind trial, extended for earlier participants for up to an additional 2 y because of interest in long-term safety and fractures. A total of 440 postmenopausal women with osteopenia were randomized to either 5 mg of vitamin K1 or placebo daily. Primary outcomes were changes in BMD at the lumbar spine and total hip at 2 y. Secondary outcomes included changes in BMD at other sites and other time points, bone turnover markers, height, fractures, adverse effects, and health-related quality of life. This study has a power of 90% to detect 3% differences in BMD between the two groups. The women in this study were vitamin D replete, with a mean serum 25-hydroxyvitamin D level of 77 nmol/l at baseline. Over 2 y, BMD decreased by −1.28% and −1.22% (p = 0.84) (difference of −0.06%; 95% confidence interval [CI] −0.67% to 0.54%) at the lumbar spine and −0.69% and −0.88% (p = 0.51) (difference of 0.19%; 95% CI −0.37% to 0.75%) at the total hip in the vitamin K and placebo groups, respectively. There were no significant differences in changes in BMD at any site between the two groups over the 2- to 4-y period. Daily vitamin K1 supplementation increased serum vitamin K1 levels by 10-fold, and decreased the percentage of undercarboxylated osteocalcin and total osteocalcin levels (bone formation marker). However, C-telopeptide levels (bone resorption marker) were not significantly different between the two groups. Fewer women in the vitamin K group had clinical fractures (nine versus 20, p = 0.04) and fewer had cancers (three versus 12, p = 0.02). Vitamin K supplements were well-tolerated over the 4-y period. There were no significant differences in adverse effects or health-related quality of life between the two groups. The study was not powered to examine fractures or cancers, and their numbers were small.

Conclusions

Daily 5 mg of vitamin K1 supplementation for 2 to 4 y does not protect against age-related decline in BMD, but may protect against fractures and cancers in postmenopausal women with osteopenia. More studies are needed to further examine the effect of vitamin K on fractures and cancers. Trial registration: ClinicalTrials.gov (#NCT00150969) and Current Controlled Trials (#ISRCTN61708241)  相似文献   
62.
63.
64.
Heat shock proteins (hsp) are well recognized for their protein folding activity. Additionally, hsp expression is enhanced during stress conditions to preserve cellular homeostasis. Hsp are also detected outside cells, released by an active mechanism independent of cell death. Extracellular hsp appear to act as signaling molecules as part of a systemic response to stress. Extracellular hsp do not contain a consensus signal for their secretion via the classical ER-Golgi compartment. Therefore, they are likely exported by an alternative mechanism requiring translocation across the plasma membrane. Since Hsp70, the major inducible hsp, has been detected on surface of stressed cells, we propose that membrane interaction is the first step in the export process. The question that emerges is how does this charged cytosolic protein interact with lipid membranes? Prior studies have shown that Hsp70 formed ion conductance pathways within artificial lipid bilayers. These early observations have been extended herewith using a liposome insertion assay. We showed that Hsp70 selectively interacted with negatively charged phospholipids, particularly phosphatidyl serine (PS), within liposomes, which was followed by insertion into the lipid bilayer, forming high-molecular weight oligomers. Hsp70 displayed a preference for less fluid lipid environments and the region embedded into the lipid membrane was mapped toward the C-terminus end of the molecule. The results from our studies provide evidence of an unexpected ability of a large, charged protein to become inserted into a lipid membrane. This observation provides a new paradigm for the interaction of proteins with lipid environments. In addition, it may explain the export mechanism of an increasing number of proteins that lack the consensus secretory signals.  相似文献   
65.
Respiratory complex II (succinate:ubiquinone oxidoreductase) connects the tricarboxylic acid cycle to the electron transport chain in mitochondria and many prokaryotes. Complex II mutations have been linked to neurodegenerative diseases and metabolic defects in cancer. However, there is no convenient stoichiometric assay for the catalytic activity of complex II. Here, we present a simple, quantitative, real-time method to detect the production of fumarate from succinate by complex II that is easy to implement and applicable to the isolated enzyme, membrane preparations, and tissue homogenates. Our assay uses fumarate hydratase to convert fumarate to malate and uses oxaloacetate decarboxylating malic dehydrogenase to convert malate to pyruvate and to convert NADP+ to NADPH; the NADPH is detected spectrometrically. Simple protocols for the high-yield production of the two enzymes required are described; oxaloacetate decarboxylating malic dehydrogenase is also suitable for accurate determination of the activity of fumarate hydratase. Unlike existing spectrometric assay methods for complex II that rely on artificial electron acceptors (e.g., 2,6-dichlorophenolindophenol), our coupled assay is specific and stoichiometric (1:1 for succinate oxidation to NADPH formation), so it is suitable for comprehensive analyses of the catalysis and inhibition of succinate dehydrogenase activities in samples with both simple and complex compositions.  相似文献   
66.
A study was conducted to determine the changes that occur to proteolysis and related genes due to age, protein, and energy intake in high-yield broiler breeder hens (Gallus gallus). Cobb 700 broiler breeders were randomly assigned to one of six diets in a 2 × 3 factorial fashion. Two levels of energy (390 and 450 kcal/day) and three levels of protein (22, 24, and 26 g CP/day) were utilized. Protein turnover was determined in the left pectoralis at 22, 26, 31 and 44 weeks. Relative mRNA expression of calpain 2 (CAPN2), proteasome C2 subunit (PSMA1), and F box protein 32 (FBXO32) were determined via RT-PCR at 20, 25, and 44 weeks. Contrasts indicate fractional synthesis rate (FSR) and FBXO32 increase to a maximum at 25–26 weeks and a decrease thereafter. A significant drop in PSMA1 and FBXO32 was observed between 25 and 44 weeks and matched the decrease observed in FBR. No differences were detected in the levels of fractional synthesis and degradation, or the expression of CAPN2, PSMA1, and FBXO32, due to protein or energy intake. In summary, protein turnover was upregulated during the transition into sexual maturity and decreased thereafter. The observed changes in degradation appeared to be mediated by the ubiquitin–proteasome pathway.  相似文献   
67.
68.
Anthropogenic disturbances of wildlife, such as noise, human presence, hunting activity, and motor vehicles, are becoming an increasing concern in conservation biology. Fireworks are an important part of celebrations worldwide, and although humans often find fireworks spectacular, fireworks are probably perceived quite differently by wild animals. Behavioral responses to fireworks are difficult to study at night, and little is known about the negative effects fireworks may have on wildlife. Every year, thousands of tons of fireworks are lit by civilians on New Year's Eve in the Netherlands. Using an operational weather radar, we quantified the reaction of birds to fireworks in 3 consecutive years. Thousands of birds took flight shortly after midnight, with high aerial movements lasting at least 45 min and peak densities measured at 500 m altitude. The highest densities were observed over grasslands and wetlands, including nature conservation sites, where thousands of waterfowl rest and feed. The Netherlands is the most important winter staging area for several species of waterfowl in Europe. We estimate that hundreds of thousands of birds in the Netherlands take flight due to fireworks. The spatial and temporal extent of disturbance is substantial, and potential consequences are discussed. Weather radar provides a unique opportunity to study the reaction of birds to fireworks, which has otherwise remained elusive.  相似文献   
69.
Rates of incorporation of [4,5-(3)H]leucine into insulin plus proinsulin, designated ;(pro)insulin', and total protein in rat pancreatic islets were measured. Glucose stimulates rates of total protein and (pro)insulin biosynthesis, but (pro)insulin biosynthesis is stimulated preferentially. Mannose and N-acetylglucosamine also stimulate (pro)insulin and total protein biosynthesis; inosine and dihydroxyacetone stimulate (pro)insulin biosynthesis specifically. Fructose does not stimulate (pro)insulin biosynthesis when tested alone, but does so in the presence of low concentrations of glucose, mannose or N-acetylglucosamine. Many glucose analogues do not stimulate (pro)insulin biosynthesis. Mannoheptulose inhibits synthesis of (pro)insulin and total protein stimulated by glucose or mannose but not by dihydroxyacetone, inosine or N-acetylglucosamine; phloretin (9mum) inhibits N-acetylglucosamine-stimulated (pro)insulin biosynthesis preferentially. The data are in agreement with the view that the same glucose-sensor mechanism may control both insulin release and biosynthesis, and ;substrate-site' model is suggested. The threshold for stimulation of biosynthesis of (pro)insulin and total protein is lower than that found for glucose-stimulated insulin release; moreover the biosynthetic response to an elevation of glucose concentration is slower than that found for insulin release. The physiological implication of these findings is discussed. Caffeine and isobutylmethylxanthine, at concentrations known to increase islet 3':5'-cyclic AMP and potentiate glucose-induced insulin release, were without effect on rates of glucose-stimulated (pro)insulin biosynthesis.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号