首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1580篇
  免费   140篇
  2023年   10篇
  2022年   11篇
  2021年   25篇
  2020年   13篇
  2019年   19篇
  2018年   12篇
  2017年   19篇
  2016年   35篇
  2015年   59篇
  2014年   50篇
  2013年   83篇
  2012年   103篇
  2011年   126篇
  2010年   72篇
  2009年   60篇
  2008年   104篇
  2007年   96篇
  2006年   99篇
  2005年   88篇
  2004年   83篇
  2003年   104篇
  2002年   86篇
  2001年   15篇
  2000年   8篇
  1999年   16篇
  1998年   19篇
  1997年   18篇
  1996年   9篇
  1995年   14篇
  1994年   18篇
  1993年   24篇
  1992年   14篇
  1991年   9篇
  1990年   14篇
  1989年   11篇
  1988年   12篇
  1987年   8篇
  1986年   12篇
  1985年   10篇
  1984年   9篇
  1983年   23篇
  1982年   20篇
  1981年   12篇
  1980年   11篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1975年   7篇
  1973年   5篇
  1970年   6篇
排序方式: 共有1720条查询结果,搜索用时 874 毫秒
61.

Aims

Our aims were to characterize the fate of leaf-litter-derived nitrogen in the plant-soil-microbe system of a temperate beech forest of Southern Germany and to identify its importance for N nutrition of beech seedlings.

Methods

15N-labelled leaf litter was traced in situ into abiotic and biotic N pools in mineral soil as well as into beech seedlings and mycorrhizal root tips over three growing seasons.

Results

There was a rapid transfer of 15N into the mineral soil already 21 days after tracer application with soil microbial biomass initially representing the dominant litter-N sink. However, 15N recovery in non-extractable soil N pools strongly increased over time and subsequently became the dominant 15N sink. Recovery in plant biomass accounted for only 0.025 % of 15N excess after 876 days. After three growing seasons, 15N excess recovery was characterized by the following sequence: non-extractable soil N?>>?extractable soil N including microbial biomass?>>?plant biomass?>?ectomycorrhizal root tips.

Conclusions

After quick vertical dislocation and cycling through microbial N pools, there was a rapid stabilization of leaf-litter-derived N in non-extractable N pools of the mineral soil. Very low 15N recovery in beech seedlings suggests a high importance of other N sources such as root litter for N nutrition of beech understorey.  相似文献   
62.

Background and aims

Litter decomposition is regulated by e.g. substrate quality and environmental factors, particularly water availability. The partitioning of nutrients released from litter between vegetation and soil microorganisms may, therefore, be affected by changing climate. This study aimed to elucidate the impact of litter type and drought on the fate of litter-derived N in beech seedlings and soil microbes.

Methods

We quantified 15N recovery rates in plant and soil N pools by adding 15N-labelled leaf and/or root litter under controlled conditions.

Results

Root litter was favoured over leaf litter for N acquisition by beech seedlings and soil microorganisms. Drought reduced 15N recovery from litter in seedlings thereby affecting root N nutrition. 15N accumulated in seedlings in different sinks depending on litter type.

Conclusions

Root turnover appears to influence (a) N availability in the soil for plants and soil microbes and (b) N acquisition and retention despite a presumably extremely dynamic turnover of microbial biomass. Compared to soil microorganisms, beech seedlings represent a very minor short-term N sink, despite a potentially high N residence time. Furthermore, soil microbes constitute a significant N pool that can be released in the long term and, thus, may become available for N nutrition of plants.  相似文献   
63.
Plant LOSS OF GDU 2 (LOG2) and Mammalian Mahogunin Ring Finger 1 (MGRN1) proteins are RING-type E3 ligases sharing similarity N-terminal to the RING domain. Deletion of this region disrupts the interaction of LOG2 with the plant membrane protein GLUTAMINE DUMPER1 (GDU1). Phylogenetic analysis identified two clades of LOG2/MGRN1-like proteins in vertebrates and plants. The ability of MGRN1 to functionally replace LOG2 was tested. MGRN1 ubiquitylates GDU1 in vitro and can partially substitute for LOG2 in the plant, partially restoring amino acid resistance to a GDU1-myc over-expression, log2-2 background. Altogether, these results suggest a conserved function for the N-terminal domain in evolution.  相似文献   
64.
65.
Respiratory complex II (succinate:ubiquinone oxidoreductase) connects the tricarboxylic acid cycle to the electron transport chain in mitochondria and many prokaryotes. Complex II mutations have been linked to neurodegenerative diseases and metabolic defects in cancer. However, there is no convenient stoichiometric assay for the catalytic activity of complex II. Here, we present a simple, quantitative, real-time method to detect the production of fumarate from succinate by complex II that is easy to implement and applicable to the isolated enzyme, membrane preparations, and tissue homogenates. Our assay uses fumarate hydratase to convert fumarate to malate and uses oxaloacetate decarboxylating malic dehydrogenase to convert malate to pyruvate and to convert NADP+ to NADPH; the NADPH is detected spectrometrically. Simple protocols for the high-yield production of the two enzymes required are described; oxaloacetate decarboxylating malic dehydrogenase is also suitable for accurate determination of the activity of fumarate hydratase. Unlike existing spectrometric assay methods for complex II that rely on artificial electron acceptors (e.g., 2,6-dichlorophenolindophenol), our coupled assay is specific and stoichiometric (1:1 for succinate oxidation to NADPH formation), so it is suitable for comprehensive analyses of the catalysis and inhibition of succinate dehydrogenase activities in samples with both simple and complex compositions.  相似文献   
66.
Though the vascular endothelial growth factor coreceptor neuropilin-1 (Nrp1) plays a critical role in vascular development, its precise function is not fully understood. We identified a group of novel binding partners of the cytoplasmic domain of Nrp1 that includes the focal adhesion regulator, Filamin A (FlnA). Endothelial cells (ECs) expressing a Nrp1 mutant devoid of the cytoplasmic domain (nrp1cytoΔ/Δ) migrated significantly slower in response to VEGF relative to the cells expressing wild-type Nrp1 (nrp1+/+ cells). The rate of FA turnover in VEGF-treated nrp1cytoΔ/Δ ECs was an order of magnitude lower in comparison to nrp1+/+ ECs, thus accounting for the slower migration rate of the nrp1cytoΔ/Δ ECs.  相似文献   
67.
68.
69.
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.  相似文献   
70.
Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号