首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5263篇
  免费   526篇
  2022年   30篇
  2021年   85篇
  2020年   49篇
  2019年   57篇
  2018年   57篇
  2017年   59篇
  2016年   123篇
  2015年   234篇
  2014年   249篇
  2013年   289篇
  2012年   406篇
  2011年   390篇
  2010年   229篇
  2009年   219篇
  2008年   331篇
  2007年   276篇
  2006年   282篇
  2005年   290篇
  2004年   291篇
  2003年   255篇
  2002年   284篇
  2001年   64篇
  2000年   39篇
  1999年   52篇
  1998年   74篇
  1997年   44篇
  1996年   47篇
  1995年   53篇
  1994年   51篇
  1993年   44篇
  1992年   33篇
  1991年   36篇
  1990年   49篇
  1989年   30篇
  1988年   32篇
  1987年   29篇
  1986年   29篇
  1985年   41篇
  1984年   46篇
  1983年   45篇
  1982年   35篇
  1981年   48篇
  1980年   40篇
  1979年   35篇
  1978年   27篇
  1977年   37篇
  1976年   29篇
  1974年   30篇
  1973年   28篇
  1972年   27篇
排序方式: 共有5789条查询结果,搜索用时 31 毫秒
921.
Purinergic signalling in rat GFSHR-17 granulosa cells was characterised by Ca2+-imaging and perforated patch-clamp. We observed a resting intracellular Ca2+-concentration ([Ca2+]i) of 100 nM and a membrane potential of −40 mV. This was consistent with high K+− and Cl permeability and a high intracellular Cl concentration of 40 mM. Application of ATP for 5–15 s every 3 min induced repeated [Ca2+]i increases and a 30 mV hyperpolarization. The phospholipase C inhibitor U73122 or the IP3-receptor antagonist 2-aminoethoethyl diphenyl borate suppressed ATP responses. Further biochemical and pharmacological experiments revealed that ATP responses were related to stimulation of P2Y2 and P2Y4 receptors and that the [Ca2+]i increase was a prerequisite for hyperpolarization. Inhibitors of Ca2+-activated channels or K+ channels did not affect the ATP-evoked responses. Conversely, inhibitors of Cl channels hyperpolarized cells to −70 mV and suppressed further ATP-evoked hyperpolarization. We propose that P2Y2 and P2Y4 receptors in granulosa cells modulate Cl permeability by regulating Ca2+-release.  相似文献   
922.
923.
924.
A series of 4-substituted proline amides was synthesized and evaluated as inhibitors of dipeptidyl pepdidase IV for the treatment of type 2 diabetes. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone (5) emerged as a potent (IC50 = 13 nM) and selective compound, with high oral bioavailability in preclinical species and low plasma protein binding. Compound 5, PF-00734200, was selected for development as a potential new treatment for type 2 diabetes.  相似文献   
925.
926.
Resistance of greenhouse-selected strains of the cabbage looper, Trichoplusia ni, to Bacillus thuringiensis subsp. kurstaki was countered by a hybrid strain of B. thuringiensis and genetically modified toxins Cry1AbMod and Cry1AcMod, which lack helix α-1. Resistance to Cry1AbMod and Cry1AcMod was >100-fold less than resistance to native toxins Cry1Ab and Cry1Ac.Insecticidal proteins from Bacillus thuringiensis are used widely for pest control, but evolution of resistance by pests can reduce their efficacy (3, 4, 6, 14). Resistance to B. thuringiensis toxins has been reported in field populations of four species of Lepidoptera, one species in response to sprays (3, 14) and three species in response to transgenic crops (10, 15, 16). Here, we focus on understanding and countering resistance to sprays of Bacillus thuringiensis subsp. kurstaki that evolved in commercial greenhouse populations of the cabbage looper, Trichoplusia ni (7, 17).We compared responses to single toxins and formulations of B. thuringiensis by two resistant strains (GipBtR and GlenBtR) and two related susceptible strains (GipS and GlenS) of T. ni. All four strains were started by the collection of larvae in 2001 from commercial greenhouses near Vancouver in British Columbia, Canada (7). Resistance evolved in the greenhouses in response to repeated sprays of DiPel (7), a formulation of B. thuringiensis subsp. kurstaki strain HD1 containing Cry1Aa, Cry1Ab, Cry1Ac, and Cry2Aa (9). Previously reported concentrations required to kill 50% of larvae (LC50s) indicated that, relative to a susceptible laboratory strain, initial resistance to DiPel was 113-fold in the Gip population (labeled T2c in reference 7) and 24-fold in the Glen population (labeled P5 in reference 7).We reared larvae on a wheat germ diet (5) at 26°C on a light-to-dark schedule of 16 h:8 h. GipS and GlenS were reared on diet without B. thuringiensis toxins, which allowed resistance to decline (7). To maintain resistance, GipBtR and GlenBtR were reared each generation on a diet treated with 5 or 10 mg of DiPel WP (Abbott Laboratories, Ontario, Canada) per milliliter of diet (7). In bioassays, groups of five third-instar larvae were put in 60-ml plastic cups containing diet, and mortality was assessed after 3 days by gently probing larvae for movement.We used diet overlay bioassays to evaluate the toxicity to GipBtR and GipS of the protoxin forms of Cry1Ab, Cry1Ac, Cry1AbMod, and Cry1AcMod produced in B. thuringiensis strains (12). Cry1AbMod and Cry1AcMod are genetically engineered variants of Cry1Ab and Cry1Ac, respectively, each lacking 56 amino acids from the amino-terminal region, including helix α-1 (12). An 80-μl aliquot containing distilled water and toxin was dispensed evenly over the surfaces of 2 ml of diet (a mean surface area of 7.1 cm2) and allowed to dry. Fifty to 200 larvae from each strain were tested at five to eight concentrations of each toxin.We used diet incorporation bioassays (7) to evaluate the toxicities of DiPel and Agree WG (Certis, Columbia, MD) to GipS, GipBtR, GlenS, and GlenBtR. Agree is a formulation of hybrid strain GC91, which was created from the conjugation-like transfer of a plasmid from B. thuringiensis subsp. kurstaki strain HD191 into B. thuringiensis subsp. aizawai strain HD135, and it contains Cry1Ac, Cry1C, and Cry1D (1, 8). DiPel and Agree were diluted in distilled water and mixed into diet (7). Twenty-five to 50 larvae from each strain were tested at six to seven concentrations of DiPel and Agree.We used probit analysis (13) to estimate the LC50s and their 95% fiducial limits (FL), as well as the slopes of concentration-mortality lines and their standard errors. The mortality of larvae fed treated diet was not adjusted for the mortality of control larvae on untreated diet, because the control mortality was low (mean, 3.6%; range, 0 to 16%). LC50s with nonoverlapping 95% FL are significantly different. Resistance ratios were calculated as the LC50 of a resistant strain (GipBtR or GlenBtR) divided by the LC50 of its susceptible counterpart (GipS or GlenS).The genetically modified toxins Cry1AbMod and Cry1AcMod were much more effective than the native toxins Cry1Ab and Cry1Ac against larvae of T. ni from the resistant GipBtR strain (Table (Table1).1). Resistance ratios of GipBtR were 580 for Cry1Ab and 1,400 for Cry1Ac but only 5.5 for Cry1AbMod and 9.3 for Cry1AcMod (Table (Table1).1). Against GipBtR, the LC50 was 53-fold higher for Cry1Ab than for Cry1AbMod and 11-fold higher for Cry1Ac than for Cry1AcMod (Table (Table1).1). Against GipS, however, the LC50 was 2-fold higher for Cry1AbMod than for Cry1Ab and 14-fold higher for Cry1AcMod than for Cry1Ac (Table (Table11).

TABLE 1.

Responses of resistant (GipBtR and GlenBtR) and susceptible (GipS and GlenS) strains of T. ni to native toxins (Cry1Ab and Cry1Ac), modified toxins (Cry1AbMod and Cry1AcMod), and formulations (DiPel and Agree)
Toxin or formulationStrainNo. of larvaeLC50 (95% FL)aSlope ± SEResistance ratiob
Cry1AbGipBtR400180 (59-2,900)c0.41 ± 0.09580
GipS3760.30 (0.21-0.41)0.56 ± 0.06
Cry1AbModGipBtR4003.4 (2.6-4.6)0.52 ± 0.055.5
GipS3750.62 (0.51-0.75)0.99 ± 0.09
Cry1AcGipBtR60054 (35-110)d0.50 ± 0.071,400
GipS1,4500.038 (0.031-0.046)0.44 ± 0.02
Cry1AcModGipBtR6005.1 (4.4-5.8)0.85 ± 0.069.3
GipS1,1450.55 (0.47-0.64)0.60 ± 0.03
DiPelGipBtR12566 (21-420,000)e0.43 ± 0.17370
GipS1250.18 (0.08-0.27)0.73 ± 0.16
AgreeGipBtR3004.9 (3.6-7.7)0.81 ± 0.129.9
GipS3000.49 (0.42-0.57)1.4 ± 0.14
DiPelGlenBtR1503.2 (2.7-3.9)1.9 ± 0.2726
GlenS1250.13 (0.05-0.17)1.5 ± 0.44
AgreeGlenBtR3002.0 (1.7-2.4)1.2 ± 0.125.9
GlenS2950.34 (0.29-0.39)1.4 ± 0.17
Open in a separate windowaConcentration that killed 50% and its 95% FL in mg protoxin per cm2 diet for toxins and mg formulation per ml of diet for DiPel and Agree.bLC50 of the resistant strain divided by the LC50 of the related susceptible strain for each toxin or formulation.cTotal of 17% mortality at the highest toxin concentration tested (17 mg protoxin/cm2 diet).dTotal of 35% mortality at the highest toxin concentration tested (23 mg protoxin/cm2 diet).eTotal of 24% mortality at the highest toxin concentration tested (15 mg DiPel/ml diet).Agree was more effective than DiPel against the two resistant strains GipBtR and GlenBtR (Table (Table1).1). Resistance ratios for DiPel were 370 for GipBtR and 26 for GlenBtR compared to resistance ratios for Agree, which were 9.9 for GipBtR and 5.9 for GlenBtR (Table (Table1).1). For the two resistant strains, LC50s were higher for DiPel than for Agree (13-fold higher against GipBtR and 1.6-fold higher against GlenBtR) (Table (Table1).1). Conversely, against the two susceptible strains, the LC50s were higher for Agree than for DiPel (2.7-fold higher against GipBtR and 2.6-fold higher against GlenBtR).The resistant GipBtR strain examined here (Table (Table1)1) and the resistant GLEN-Cry1Ac-BCS strain of T. ni studied by Wang et al. (17) had >500-fold resistance to Cry1Ab and Cry1Ac. Both GipBtR and GLEN-Cry1Ac-BCS were derived from greenhouse populations of T. ni that had been sprayed repeatedly with DiPel (7, 17), which contains Cry1Ab and Cry1Ac but not Cry1C or Cry1D (9). The GLEN-Cry1Ac-BCS strain had cross-resistance of only 2.5-fold to Cry1C and 2.4-fold to Cry1D (17). Agree contains Cry1C and Cry1D (8), which probably boosted its efficacy against GipBtR and GlenBtR (Table (Table11).The results here with Cry1AbMod and Cry1AcMod extend those of previous work indicating that modified toxins killed larvae of Manduca sexta in which susceptibility to Cry1Ab was decreased via RNA interference and also killed larvae of Pectinophora gossypiella that had laboratory-selected, genetically based resistance to Cry1Ab and Cry1Ac (12). The efficacy of Cry1AbMod and Cry1AcMod against greenhouse-selected T. ni suggests that the modified toxins may be useful against resistance that evolves in commercial agricultural settings. The results here also increase the number of lepidopteran species against which the modified toxins were effective to three, with each species representing a different family (Sphingidae, Gelechiidae, and Noctuidae). In the two other species, decreased susceptibility to native Cry1A toxins was mediated by alterations in a cadherin protein that binds Cry1Ac (2, 11, 12), whereas the role of cadherin in T. ni resistance has not been demonstrated or excluded.Similar to patterns observed with P. gossypiella (12), modified toxins were more effective than native toxins against resistant T. ni larvae, but native toxins were more effective than modified toxins against susceptible T. ni larvae (Table (Table1).1). This raises the intriguing possibility that combinations of native and modified toxins might be especially effective against populations with a mixture of susceptible and resistant individuals. In any case, the Cry1AMod toxins and hybrid B. thuringiensis products applied either jointly or separately may be useful for countering or delaying evolution of resistance in T. ni. However, further work is needed to determine how native and modified toxins interact when used in combination and how modified toxins perform in the greenhouse and field.  相似文献   
927.
Genomic analysis indicated that Edwardsiella ictaluri encodes a putative urease pathogenicity island containing the products of nine open reading frames, including urea and ammonium transporters. In vitro studies with wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significantly tolerant of acid conditions (pH 3.0) but that urease activity is not required for acid tolerance. Growth studies demonstrated that E. ictaluri is unable to grow at pH 5 in the absence of urea but is able to elevate the environmental pH from pH 5 to pH 7 and grow when exogenous urea is available. Substantial production of ammonia was observed for wild-type E. ictaluri in vitro in the presence of urea at low pH, and optimal activity occurred at pH 2 to 3. No ammonia production was detected for the urease mutant. Proteomic analysis with two-dimensional gel electrophoresis indicated that urease proteins are expressed at both pH 5 and pH 7, although urease activity is detectable only at pH 5. Urease was not required for initial invasion of catfish but was required for subsequent proliferation and virulence. Urease was not required for initial uptake or survival in head kidney-derived macrophages but was required for intracellular replication. Intracellular replication of wild-type E. ictaluri was significantly enhanced when urea was present, indicating that urease plays an important role in intracellular survival and replication, possibly through neutralization of the acidic environment of the phagosome.Identification of virulence factors is vitally important to an understanding of the pathogenesis of Edwardsiella ictaluri and to the development of methods for controlling the spread of disease. Although the pathogenesis of E. ictaluri was reviewed in 1993 (28, 31), recent reports demonstrated that E. ictaluri is a facultative intracellular pathogen (3) and that a type III secretion system is required for intracellular survival and replication within channel catfish head kidney-derived macrophages (HKDM) (30). Using signature-tagged mutagenesis (STM) in an immersion challenge model for E. ictaluri, Thune et al. (30) identified 50 transconjugants carrying transposon insertions in genes required for survival and replication in the channel catfish host. Two of those mutants had insertions in genes encoding homologs of UreG and UreF, proteins that are essential for the production of an active urease enzyme in other bacteria (6, 10, 14, 26). UreG is a GTP-binding accessory protein that functions in energy-dependent assembly of the urease holoenzyme (19), while UreF is a urease accessory protein that functions in the generation or delivery of carbon dioxide to the urease metallocenter assembly site (19). Both the ureG and ureF mutant strains were further characterized in a competitive challenge with the wild-type (WT) parental strain and were confirmed to be significantly attenuated (30). The identification of two mutants with insertions in urease-associated genes suggests an important role for urease activity in E. ictaluri pathogenesis, despite the fact that E. ictaluri is urease negative in standard biochemical tests. Consequently, the objectives of this study are to characterize the E. ictaluri urease pathogenicity island (PAI), to evaluate conditions for E. ictaluri urease activity, and to establish a possible role for urease in E. ictaluri pathogenesis.  相似文献   
928.
929.
Two decades of research on euthanasia in the Netherlands have resulted into clear insights in the frequency and characteristics of euthanasia and other medical end-of-life decisions in the Netherlands. These empirical studies have contributed to the quality of the public debate, and to the regulating and public control of euthanasia and physician-assisted suicide. No slippery slope seems to have occurred. Physicians seem to adhere to the criteria for due care in the large majority of cases. Further, it has been shown that the majority of physicians think that the euthanasia Act has improved their legal certainty and contributes to the carefulness of life-terminating acts. In 2005, eighty percent of the euthanasia cases were reported to the review committees. Thus, the transparency envisaged by the Act still does not extend to all cases. Unreported cases almost all involve the use of opioids, and are not considered to be euthanasia by physicians. More education and debate is needed to disentangle in these situations which acts should be regarded as euthanasia and which should not. Medical end-of-life decision-making is a crucial part of end-of-life care. It should therefore be given continuous attention in health care policy and medical training. Systematic periodic research is crucial for enhancing our understanding of end-of-life care in modern medicine, in which the pursuit of a good quality of dying is nowadays widely recognized as an important goal, in addition to the traditional goals such as curing diseases and prolonging life.  相似文献   
930.
The recent recognition of established populations of the mosquito, Culex gelidus Theobald, in Australia has raised concerns about local transmission of arboviruses. The vector competence of a mainland population of Cx. gelidus was investigated for two local alphaviruses, Ross River (RRV) and Barmah Forest (BFV) viruses, and three flaviviruses, Japanese encephalitis (JEV), Kunjin (KUNV) and Murray Valley encephalitis (MVEV) viruses. Colonised mosquitoes were exposed to virus via blood-soaked pledgets and transmission was tested using a capillary-tube method. The important Australian vectors, Aedes vigilax (Skuse) and Culex annulirostris Skuse, were used as internal controls for the alphaviruses and flaviviruses, respectively. Overall, Cx. gelidus was a more efficient vector of flaviviruses than alphaviruses. Culex gelidus was refractory to infection with BFV, and nearly 25% transmitted RRV, which was comparable to Ae. vigilax . Culex gelidus was susceptible to all three flaviviruses, with transmission rates of 96%, 95% and 41% for JEV, KUNV and MVEV, respectively. JEV transmission rates in Cx. annulirostris were unexpectedly low and this was possibly due to differences in susceptibility to JEV genotypes I and II. Considering the high susceptibility to the flaviviruses demonstrated here, and the natural infections with RRV and JEV that have been detected from northern Australian populations, the establishment of the exotic mosquito, Cx. gelidus , in Australia is potentially a significant public health concern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号