首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5264篇
  免费   526篇
  2022年   31篇
  2021年   85篇
  2020年   49篇
  2019年   57篇
  2018年   57篇
  2017年   59篇
  2016年   123篇
  2015年   234篇
  2014年   249篇
  2013年   289篇
  2012年   406篇
  2011年   390篇
  2010年   229篇
  2009年   219篇
  2008年   331篇
  2007年   276篇
  2006年   282篇
  2005年   290篇
  2004年   291篇
  2003年   255篇
  2002年   284篇
  2001年   64篇
  2000年   39篇
  1999年   52篇
  1998年   74篇
  1997年   44篇
  1996年   47篇
  1995年   53篇
  1994年   51篇
  1993年   44篇
  1992年   33篇
  1991年   36篇
  1990年   49篇
  1989年   30篇
  1988年   32篇
  1987年   29篇
  1986年   29篇
  1985年   41篇
  1984年   46篇
  1983年   45篇
  1982年   35篇
  1981年   48篇
  1980年   40篇
  1979年   35篇
  1978年   27篇
  1977年   37篇
  1976年   29篇
  1974年   30篇
  1973年   28篇
  1972年   27篇
排序方式: 共有5790条查询结果,搜索用时 15 毫秒
841.
842.
843.
The Decipherment of Ancient Maya Writing. Stephen Houston. Oswaldo Chinchilla Mazariegos. and David Stuart. eds. Norman: University of Oklahoma Press, 2001. 576 pp.  相似文献   
844.
845.
The effect of a substituted pyridazinone (4-chloro-5(dimethylamino)-2-phenyl-3(2H)pyridazinone; Sandoz 9785; BASF 13-338) on the formation of fatty acids from radiolabelled precursors has been studied in a number of angiosperms, bryophytes and algae. The labelling of [14C]linolenic acid was decreased by the herbicide in leaves of barley and rye grass and in cucumber cotyledons regardless of whether [14C]acetate,[14C]oleate or [14C]linoleate was used as precursor. A commensurate increase in the labelling of [14C]linoleic acid was also observed in these species. In contrast, the pattern of fatty acid labelling in maize, pea and spinach leaves was unaffected by 0.1 mM Sandoz 9785. More generalized inhibition of the incorporation of radioactivity from [14C]acetate into the fatty acids of bryophytes and algae was seen. Sandoz 9785 did not alter the distribution of radioactivity in different lipid classes of higher plant leaves, nor did it change the proportions of radioactive fatty ac ids in phosphatidylcholine. In contrast to phosphatidylcholine, which never contained more than trace amounts of [14C]linolenate, diacylgalactosylglycerol contained high levels of the radioactive acid. The relative labelling of linolenate was severely reduced in diacylgalactosylglycerol by Sandoz 9785 in sensitive angiosperms. Uptake studies, in which [3H]Sandoz 9785 was employed demonstrated that the uptake of Sandoz 9785 was reflection of water uptake. Following its uptake, Sandoz 9785 was rapidly converted into other compounds in pea but only gradually metabolized in cucumber and ryegrass. The results are interpreted as showing, firstly, that the different sensitivity of higher plants to Sandoz 9785 is due to variations both in uptake and in metabolism. Secondly, Sandoz 9785 specifically inhibits the desaturation of linoleate to linolenate and, thirdly, diacylgalactosylglycerol plays a role in this conversion.  相似文献   
846.
Stomata are present on the outer and inner fruit walls and seed coats of Eschscholzia californica, E. covillei, E. glyptosperma, E. lemmonii and E. minutiflora. The stomata on the inner fruit wall and seed coat remain constantly open, even under plasmolyzing conditions, whereas those of the outer fruit wall are able to open and close. This allows for gas exchange in these chlorophyllous structures. Fibrous bundle caps in the costal regions of the fruit act as windows allowing light transmission to the photosynthetic seeds within. Preliminary results show that the total photosynthesis by the fruits and seeds of Eschscholzia californica together appears to at least balance respiratory losses, and under favorable conditions might significantly contribute to seed and fruit development.  相似文献   
847.
848.
849.
The pseudorabies virus (PrV) gene homologous to herpes simplex virus type 1 (HSV-1) UL53, which encodes HSV-1 glycoprotein K (gK), has recently been sequenced (J. Baumeister, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 69:5560–5567, 1995). To identify the corresponding protein, a rabbit antiserum was raised against a 40-kDa glutathione S-transferase–gK fusion protein expressed in Escherichia coli. In Western blot analysis, this serum detected a 32-kDa polypeptide in PrV-infected cell lysates as well as a 36-kDa protein in purified virion preparations, demonstrating that PrV gK is a structural component of virions. After treatment of purified virions with endoglycosidase H, a 34-kDa protein was detected, while after incubation with N-glycosidase F, a 32-kDa protein was specifically recognized. This finding indicates that virion gK is modified by N-linked glycans of complex as well as high-mannose type. For functional analysis, the UL53 open reading frame was interrupted after codon 164 by insertion of a gG-lacZ expression cassette into the wild-type PrV genome (PrV-gKβ) or by insertion of the bovine herpesvirus 1 gB gene into a PrV gB genome (PrV-gKgB). Infectious mutant virus progeny was obtained only on complementing gK-expressing cells, suggesting that gK has an important function in the replication cycle. After infection of Vero cells with either gK mutant, only single infected cells or small foci of infected cells were visible. In addition, virus yield was reduced approximately 30-fold, and penetration kinetics showed a delay in entry which could be compensated for by phenotypic gK complementation. Interestingly, the plating efficiency of PrV-gKβ was similar to that of wild-type PrV on complementing and noncomplementing cells, pointing to an essential function of gK in virus egress but not entry. Ultrastructurally, virus assembly and morphogenesis of PrV gK mutants in noncomplementing cells were similar to wild-type virus. However, late in infection, numerous nucleocapsids were found directly underneath the plasma membrane in stages typical for the entry process, a phenomenon not observed after wild-type virus infection and also not visible after infection of gK-complementing cells. Thus, we postulate that presence of gK is important to inhibit immediate reinfection.Herpesvirions are complex structures consisting of a nucleoprotein core, capsid, tegument, and envelope. They comprise at least 30 structural proteins (35). Pseudorabies virus (PrV), a member of the Alphaherpesvirinae, is an economically important animal pathogen, causing Aujeszky’s disease in swine. It is also highly pathogenic for most other mammals except higher primates, including humans (28, 45), and a wide range of cultured cells from different species support productive virus replication, reflecting the wide in vivo host range. Envelope glycoproteins play major roles in the early and late interactions between virion and host cell. They are required for virus entry and participate in release of free virions and viral spread by direct cell-to-cell transmission (27, 37). For PrV, 10 glycoproteins, designated gB, gC, gD, gE, gG, gH, gI, gL, gM, and gN, have been characterized (20, 27); these glycoproteins are involved in the attachment of virion to host cell (gC and gD), fusion of viral envelope and cellular cytoplasmic membrane (gB, gD, gH, and gL), spread from infected to noninfected cells (gB, gE, gH, gI, gL, and gM), and egress (gC, gE, and gI) (27, 37). Homologs of these glycoproteins are also present in other alphaherpesviruses (37). The gene coding for a potential 11th PrV glycoprotein, gK, has been described recently (3), but the protein and its function have not been identified.The product of the homologous UL53 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) is gK (13, 32). gK was detected in nuclear membranes and in membranes of the endoplasmic reticulum but was not observed in the plasma membrane (14). Also, it did not appear to be present in purified virion preparations (15). The latter result was surprising since earlier studies identified several mutations in HSV-1 gK resulting in syncytium-inducing phenotypes (7, 14), which indicates participation of gK in membrane fusion events during HSV-1 infection. Moreover, HSV-1 mutants in gK exhibited a delayed entry into noncomplementing cells, which is difficult to reconcile with absence of gK from virions (31). Mutants deficient for gK expression have been isolated and investigated by different groups (16, 17). Mutant F-gKβ carries a lacZ gene insertion in the HSV-1 strain F gK gene, which interrupts the ORF after codon 112 (16). In mutant ΔgK, derived from HSV-1 KOS, almost all of the UL53 gene was deleted (17). Both mutants formed small plaques on Vero cells, and virus yield was reduced to an extent which varied with the different confluencies of the infected cells, cell types, and mutants used for infection. However, both HSV-1 gK mutants showed a defect in efficient translocation of virions from the cytoplasm to the extracellular space, and only a few enveloped virions were present in the extracellular space after infection of Vero cells (16, 17). The authors therefore suggested that HSV-1 gK plays a role in virion transport during egress.Different routes of final envelopment and egress of alphaherpesvirions are discussed. It has been suggested that HSV-1 nucleocapsids acquire their envelope at the inner nuclear membrane and are transported as enveloped particles through the endoplasmic reticulum to the Golgi stacks, where glycoproteins are modified in situ during transport (5, 6, 19, 39), although other potential egress pathways cannot be excluded (4). In contrast, maturation of varicella-zoster virus and PrV involves primary envelopment at the nuclear membrane, followed by release of nucleocapsids into the cytoplasm and secondary envelopment in the trans-Golgi area (10, 12, 43). Final egress of virions appears to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. The possibility of different routes of virion egress is supported by studies of other proteins involved in egress, e.g., the UL20 proteins of HSV-1 and PrV and the PrV UL3.5 protein, which lacks a homolog in the HSV-1 genome (1, 8, 9). In UL20-negative HSV-1, virions accumulated in the perinuclear cisterna of Vero cells (1), while PrV UL20 virions accumulated and were retained in cytoplasmic vesicles (9). PrV UL3.5 is important for budding of nucleocapsids into Golgi-derived vesicles during secondary envelopment (8). Thus, there appear to be profound differences in the egress pathways. Since HSV-1 gK was also implicated in egress, we were interested in identifying the PrV homolog and analyzing its function.  相似文献   
850.
The effect of nalidixic acid on the growth of various deoxyribonucleic acid (DNA) bacteriophages has been investigated by one-step growth experiments. The Escherichia coli bacteriophages T5, lambda, T7 and phiR are strongly inhibited by nalidixic acid, whereas T4 and T2 are only partially inhibited. The Bacillus subtilis bacteriophages SP82, SP50, and phi29 are relatively unaffected by nalidixic acid. There is no correlation between those bacteriophages which can grow in the presence of nalidixic acid and the presence of an unusual base in the phage DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号