全文获取类型
收费全文 | 5282篇 |
免费 | 520篇 |
专业分类
5802篇 |
出版年
2022年 | 41篇 |
2021年 | 85篇 |
2020年 | 49篇 |
2019年 | 57篇 |
2018年 | 57篇 |
2017年 | 59篇 |
2016年 | 123篇 |
2015年 | 234篇 |
2014年 | 249篇 |
2013年 | 289篇 |
2012年 | 406篇 |
2011年 | 390篇 |
2010年 | 229篇 |
2009年 | 219篇 |
2008年 | 331篇 |
2007年 | 276篇 |
2006年 | 282篇 |
2005年 | 290篇 |
2004年 | 291篇 |
2003年 | 255篇 |
2002年 | 284篇 |
2001年 | 64篇 |
2000年 | 39篇 |
1999年 | 52篇 |
1998年 | 74篇 |
1997年 | 44篇 |
1996年 | 47篇 |
1995年 | 53篇 |
1994年 | 51篇 |
1993年 | 44篇 |
1992年 | 33篇 |
1991年 | 36篇 |
1990年 | 49篇 |
1989年 | 30篇 |
1988年 | 32篇 |
1987年 | 29篇 |
1986年 | 29篇 |
1985年 | 41篇 |
1984年 | 46篇 |
1983年 | 45篇 |
1982年 | 35篇 |
1981年 | 48篇 |
1980年 | 40篇 |
1979年 | 35篇 |
1978年 | 27篇 |
1977年 | 37篇 |
1976年 | 29篇 |
1974年 | 30篇 |
1973年 | 28篇 |
1972年 | 27篇 |
排序方式: 共有5802条查询结果,搜索用时 15 毫秒
811.
Duxin JP Moore HR Sidorova J Karanja K Honaker Y Dao B Piwnica-Worms H Campbell JL Monnat RJ Stewart SA 《The Journal of biological chemistry》2012,287(26):21980-21991
Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. Depletion of hDna2 resulted in S/G(2) phase-specific DNA damage as evidenced by increased γ-H2AX, replication protein A foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation and replication fork progression in human cells. As expected, FEN1 depletion led to a significant reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on replication fork progression, indicating that fork movement is not tightly coupled to lagging strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed to rescue genomic instability. These findings suggest that the genomic instability observed in hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in DNA replication that is distinct from FEN1 and OF maturation. 相似文献
812.
Eckert JJ McCallum A Mears A Rumsby MG Cameron IT Fleming TP 《Developmental biology》2005,288(1):234-247
In mouse early development, cell contact patterns regulate the spatial organization and segregation of inner cell mass (ICM) and trophectoderm epithelium (TE) during blastocyst morphogenesis. Progressive membrane assembly of tight junctional (TJ) proteins in the differentiating TE during cleavage is upregulated by cell contact asymmetry (outside position) and suppressed within the ICM by cell contact symmetry (inside position). This is reversible, and immunosurgical isolation of the ICM induces upregulation of TJ assembly in a sequence that broadly mimics that occurring during blastocyst formation. The mechanism relating cell contact pattern and TJ assembly was investigated in the ICM model with respect to PKC-mediated signaling and gap junctional communication. Our results indicate that complete cell contact asymmetry is required for TJ biogenesis and acts upstream of PKC-mediated signaling. Specific inhibition of two PKC isoforms, PKCdelta and zeta, revealed that both PKC activities are required for membrane assembly of ZO-2 TJ protein, while only PKCzeta activity is involved in regulating ZO-1alpha+ membrane assembly, suggesting different mechanisms for individual TJ proteins. Gap junctional communication had no apparent influence on either TJ formation or PKC signaling but was itself affected by changes of cell contact patterns. Our data suggest that the dynamics of cell contact patterns coordinate the spatial organization of TJ formation via specific PKC signaling pathways during blastocyst biogenesis. 相似文献
813.
814.
Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource 下载免费PDF全文
Climate change‐induced shifts in flowering phenology can expose plants to novel biotic and abiotic environments, potentially leading to decreased temporal overlap with pollinators and exposure to conditions that negatively affect fruit and seed set. We explored the relationship between flowering phenology and reproductive output in the common shrub pointleaf manzanita Arctostaphylos pungens in a lower montane habitat in southeastern Arizona, USA. Contrary to the pattern of progressively earlier flowering observed in many species, long‐term records show that A. pungens flowering onset is shifting later and the flowering season is being compressed. This species can thus provide unusual insight into the effects of altered phenology. To determine the consequences of among‐ and within‐plant variation in flowering time, we documented individual flowering schedules and followed the fates of flowers on over 50 plants throughout two seasons (2012 and 2013). We also measured visitation rates by potential pollinators in 2012, as well as both fruit mass and seeds per fruit of flowers produced at different times. Fruit set was positively related to visitation rate but declined with later dates of flower production in both years. Total fruit production per plant was positively influenced by flowering duration, which declined with later flowering onset, as did fruit mass. Individual flowering schedules were consistent between years, suggesting that plants that begin flowering late have lower reproductive output each year. These patterns suggest that if pointleaf manzanita flowering continues to shift later, its flowering season may continue to become shorter, compressing floral resource availability for pollinators and leading to reduced reproductive output. These results reveal the negative effects of delayed phenology on reproductive output in a long‐lived plant. They highlight the value of using natural variation in flowering time, in combination with long‐term data, to anticipate the consequences of phenological shifts. 相似文献
815.
Helen K. Graham Nigel W. Hodson Judith A. Hoyland Sarah J. Millward-Sadler David Garrod Anthea Scothern Christopher E.M. Griffiths Rachel E.B. Watson Thomas R. Cox Janine T. Erler Andrew W. Trafford Michael J. Sherratt 《Matrix biology》2010,29(4):254-260
Conventional approaches for ultrastructural high-resolution imaging of biological specimens induce profound changes in bio-molecular structures. By combining tissue cryo-sectioning with non-destructive atomic force microscopy (AFM) imaging we have developed a methodology that may be applied by the non-specialist to both preserve and visualize bio-molecular structures (in particular extracellular matrix assemblies) in situ. This tissue section AFM technique is capable of: i) resolving nm–µm scale features of intra- and extracellular structures in tissue cryo-sections; ii) imaging the same tissue region before and after experimental interventions; iii) combining ultrastructural imaging with complimentary microscopical and micromechanical methods. Here, we employ this technique to: i) visualize the macro-molecular structures of unstained and unfixed fibrillar collagens (in skin, cartilage and intervertebral disc), elastic fibres (in aorta and lung), desmosomes (in nasal epithelium) and mitochondria (in heart); ii) quantify the ultrastructural effects of sequential collagenase digestion on a single elastic fibre; iii) correlate optical (auto fluorescent) with ultrastructural (AFM) images of aortic elastic lamellae. 相似文献
816.
PCR detection of hemolysin (vhh) gene in Vibrio harveyi 总被引:4,自引:0,他引:4
The Vibrio harveyi hemolysin gene (vhh), which encodes for a virulence factor involved in pathogenicity to fish and shellfish species, may be targeted for species detection or strain differentiation. Primers designed for this gene were used in detection studies of V. harveyi strains from various hosts. One primer set among four tested, could amplify the expected gene fragment in PCR using templates from all 11 V. harveyi strains studied. Detection of the presence of the hemolysin gene could therefore serve as a suitable detection marker of Vibrio harveyi isolates potentially pathogenic to fish and shrimps. 相似文献
817.
Through a convergence of functional genomic and proteomic studies, we identify Bora as a previously unknown cell cycle protein that interacts with the Plk1 kinase and the SCF-beta-TrCP ubiquitin ligase. We show that the Bora protein peaks in G2 and is degraded by proteasomes in mitosis. Proteolysis of Bora requires the Plk1 kinase activity and is mediated by SCF-beta-TrCP. Plk1 phosphorylates a conserved DSGxxT degron in Bora and promotes its interaction with beta-TrCP. Mutations in this degron stabilize Bora. Expression of a nondegradable Bora variant prolongs the metaphase and delays anaphase onset, indicating a physiological requirement of Bora degradation. Interestingly, the activity of Bora is also required for normal mitotic progression, as knockdown of Bora activates the spindle checkpoint and delays sister chromatid segregation. Mechanistically, Bora regulates spindle stability and microtubule polymerization and promotes tension across sister kinetochores during mitosis. We conclude that tight regulation of the Bora protein by its synthesis and degradation is critical for cell cycle progression. 相似文献
818.
Sílvia Saumell Francesc Solé Leonor Arenillas Julia Montoro David Valcárcel Carme Pedro Carmen Sanzo Elisa Lu?o Teresa Giménez Montserrat Arnan Helena Pomares Raquel De Paz Beatriz Arrizabalaga Andrés Jerez Ana B. Martínez Judith Sánchez-Castro Juan D. Rodríguez-Gambarte José M. Raya Eduardo Ríos María Rodríguez-Rivera Blanca Espinet Lourdes Florensa 《PloS one》2015,10(6)
Isolated trisomy 8 is not considered presumptive evidence of myelodysplastic syndrome (MDS) in cases without minimal morphological criteria. One reason given is that trisomy 8 (+8) can be found as a constitutional mosaicism (cT8M). We tried to clarify the incidence of cT8M in myeloid neoplasms, specifically in MDS, and the diagnostic value of isolated +8 in MDS. Twenty-two MDS and 10 other myeloid neoplasms carrying +8 were studied. Trisomy 8 was determined in peripheral blood by conventional cytogenetics (CC) and on granulocytes, CD3+ lymphocytes and oral mucosa cells by fluorescence in situ hybridization (FISH). In peripheral blood CC, +8 was seen in 4/32 patients. By FISH, only one patient with chronic myelomonocytic leukemia showed +8 in all cell samples and was interpreted as a cT8M. In our series +8 was acquired in all MDS. Probably, once discarded cT8M by FISH from CD3+ lymphocytes and non-hematological cells, +8 should be considered with enough evidence to MDS. 相似文献
819.
Estimating striae of Retzius periodicity nondestructively using partial counts of perikymata 下载免费PDF全文
Gina McFarlane Judith Littleton Bruce Floyd 《American journal of physical anthropology》2014,154(2):251-258
Accurate age estimations for enamel formation and the timing of enamel hypoplasia have traditionally only been available through histological analyses of dental thin sections, which is a difficult and destructive process. However, an association between striae of Retzius periodicity, crucial for accurate aging, and the total number of striae in imbricational enamel has been reported in the literature. This means periodicity can be estimated nondestructively but is reliant on all perikymata being visible along the crown surface. Therefore, crowns with worn or damaged surfaces may not be able to be assessed, potentially limiting sample sizes. We tested this relationship in a modern New Zealand sample and investigated whether reliable associations might be identified using only partial perikymata counts from the cervical half of the crown. Using mandibular canines (n = 11), the distribution of perikymata per decile was recorded using high definition replica surfaces. Thin sections of the same crowns were used to assess periodicity histologically along with striae of Retzius distributions. A strong correlation between total striae numbers and periodicity was also identified in our sample. Furthermore, we report strong correlations that allow periodicity to be estimated from perikymata counts using only 10% of crown height when certain deciles are used. Based on these findings, we propose a simple matrix that can be developed for nondestructively estimating periodicity based on the range of perikymata counts in the sixth to ninth deciles. Am J Phys Anthropol 154:251–258, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
820.
Barbara G. Klupp Judith Baumeister Petra Dietz Harald Granzow Thomas C. Mettenleiter 《Journal of virology》1998,72(3):1949-1958
The pseudorabies virus (PrV) gene homologous to herpes simplex virus type 1 (HSV-1) UL53, which encodes HSV-1 glycoprotein K (gK), has recently been sequenced (J. Baumeister, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 69:5560–5567, 1995). To identify the corresponding protein, a rabbit antiserum was raised against a 40-kDa glutathione S-transferase–gK fusion protein expressed in Escherichia coli. In Western blot analysis, this serum detected a 32-kDa polypeptide in PrV-infected cell lysates as well as a 36-kDa protein in purified virion preparations, demonstrating that PrV gK is a structural component of virions. After treatment of purified virions with endoglycosidase H, a 34-kDa protein was detected, while after incubation with N-glycosidase F, a 32-kDa protein was specifically recognized. This finding indicates that virion gK is modified by N-linked glycans of complex as well as high-mannose type. For functional analysis, the UL53 open reading frame was interrupted after codon 164 by insertion of a gG-lacZ expression cassette into the wild-type PrV genome (PrV-gKβ) or by insertion of the bovine herpesvirus 1 gB gene into a PrV gB− genome (PrV-gKgB). Infectious mutant virus progeny was obtained only on complementing gK-expressing cells, suggesting that gK has an important function in the replication cycle. After infection of Vero cells with either gK mutant, only single infected cells or small foci of infected cells were visible. In addition, virus yield was reduced approximately 30-fold, and penetration kinetics showed a delay in entry which could be compensated for by phenotypic gK complementation. Interestingly, the plating efficiency of PrV-gKβ was similar to that of wild-type PrV on complementing and noncomplementing cells, pointing to an essential function of gK in virus egress but not entry. Ultrastructurally, virus assembly and morphogenesis of PrV gK mutants in noncomplementing cells were similar to wild-type virus. However, late in infection, numerous nucleocapsids were found directly underneath the plasma membrane in stages typical for the entry process, a phenomenon not observed after wild-type virus infection and also not visible after infection of gK-complementing cells. Thus, we postulate that presence of gK is important to inhibit immediate reinfection.Herpesvirions are complex structures consisting of a nucleoprotein core, capsid, tegument, and envelope. They comprise at least 30 structural proteins (35). Pseudorabies virus (PrV), a member of the Alphaherpesvirinae, is an economically important animal pathogen, causing Aujeszky’s disease in swine. It is also highly pathogenic for most other mammals except higher primates, including humans (28, 45), and a wide range of cultured cells from different species support productive virus replication, reflecting the wide in vivo host range. Envelope glycoproteins play major roles in the early and late interactions between virion and host cell. They are required for virus entry and participate in release of free virions and viral spread by direct cell-to-cell transmission (27, 37). For PrV, 10 glycoproteins, designated gB, gC, gD, gE, gG, gH, gI, gL, gM, and gN, have been characterized (20, 27); these glycoproteins are involved in the attachment of virion to host cell (gC and gD), fusion of viral envelope and cellular cytoplasmic membrane (gB, gD, gH, and gL), spread from infected to noninfected cells (gB, gE, gH, gI, gL, and gM), and egress (gC, gE, and gI) (27, 37). Homologs of these glycoproteins are also present in other alphaherpesviruses (37). The gene coding for a potential 11th PrV glycoprotein, gK, has been described recently (3), but the protein and its function have not been identified.The product of the homologous UL53 open reading frame (ORF) of herpes simplex virus type 1 (HSV-1) is gK (13, 32). gK was detected in nuclear membranes and in membranes of the endoplasmic reticulum but was not observed in the plasma membrane (14). Also, it did not appear to be present in purified virion preparations (15). The latter result was surprising since earlier studies identified several mutations in HSV-1 gK resulting in syncytium-inducing phenotypes (7, 14), which indicates participation of gK in membrane fusion events during HSV-1 infection. Moreover, HSV-1 mutants in gK exhibited a delayed entry into noncomplementing cells, which is difficult to reconcile with absence of gK from virions (31). Mutants deficient for gK expression have been isolated and investigated by different groups (16, 17). Mutant F-gKβ carries a lacZ gene insertion in the HSV-1 strain F gK gene, which interrupts the ORF after codon 112 (16). In mutant ΔgK, derived from HSV-1 KOS, almost all of the UL53 gene was deleted (17). Both mutants formed small plaques on Vero cells, and virus yield was reduced to an extent which varied with the different confluencies of the infected cells, cell types, and mutants used for infection. However, both HSV-1 gK mutants showed a defect in efficient translocation of virions from the cytoplasm to the extracellular space, and only a few enveloped virions were present in the extracellular space after infection of Vero cells (16, 17). The authors therefore suggested that HSV-1 gK plays a role in virion transport during egress.Different routes of final envelopment and egress of alphaherpesvirions are discussed. It has been suggested that HSV-1 nucleocapsids acquire their envelope at the inner nuclear membrane and are transported as enveloped particles through the endoplasmic reticulum to the Golgi stacks, where glycoproteins are modified in situ during transport (5, 6, 19, 39), although other potential egress pathways cannot be excluded (4). In contrast, maturation of varicella-zoster virus and PrV involves primary envelopment at the nuclear membrane, followed by release of nucleocapsids into the cytoplasm and secondary envelopment in the trans-Golgi area (10, 12, 43). Final egress of virions appears to occur via transport vesicles containing one or more virus particles by fusion of vesicle and cell membrane. The possibility of different routes of virion egress is supported by studies of other proteins involved in egress, e.g., the UL20 proteins of HSV-1 and PrV and the PrV UL3.5 protein, which lacks a homolog in the HSV-1 genome (1, 8, 9). In UL20-negative HSV-1, virions accumulated in the perinuclear cisterna of Vero cells (1), while PrV UL20− virions accumulated and were retained in cytoplasmic vesicles (9). PrV UL3.5 is important for budding of nucleocapsids into Golgi-derived vesicles during secondary envelopment (8). Thus, there appear to be profound differences in the egress pathways. Since HSV-1 gK was also implicated in egress, we were interested in identifying the PrV homolog and analyzing its function. 相似文献