首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   14篇
  129篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   10篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1968年   2篇
  1967年   2篇
  1952年   1篇
  1949年   1篇
  1905年   1篇
  1904年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
91.
92.
In most Westernized societies, there has been an alarming increase in the consumption of sugar‐sweetened drinks. For many adults these drinks represent a substantial proportion of their total daily caloric intake. Here we investigated whether extended exposure to sugar changes behavior and protein expression in the orbitofrontal cortex (OFC). Male adult Sprague‐Dawley rats (n = 8 per group) were treated for 26 days with either water or a 10% sucrose solution. Locomotor behavior was measured on the first and last day of treatment, then 1 week after treatment. Following the 1‐week period free from treatment, sucrose treated rats were significantly more active than the control. Two hours following final behavioral testing, brains were rapidly removed and prepared for proteomic analysis of the OFC. Label free quantitative shotgun proteomic analyses of three rats from each group found 290 proteins were differentially expressed in the sucrose treated group when compared to the control group. Major changes in the proteome were seen in proteins related to energy metabolism, mitochondrial function and the cellular response to stress. This research does not seek to suggest that sugar will cause specific neurological disorders, however similar changes in proteins have been seen in neurological disorders such as Alzheimer's disease, Parkinson's disease and schizophrenia.  相似文献   
93.
94.
The threat of homogenisation to biodiversity is generally considered to occur at broad scales or in response to high-intensity impacts. Therefore, most biodiversity studies estimate local average or total species richness rather than local heterogeneity. Here we consider the potential for relative shifts between these different aspects of biodiversity at small spatial scales to be an early warning signal for biodiversity loss. In response to chronic, very low-level pollution, we observed a disjunctive response with gamma diversity (total species richness) and beta diversity (heterogeneity) decreasing while alpha diversity (average species richness) was still increasing. Homogenisation may, therefore, affect biodiversity through thresholds that alter the relationship between the average species richness and its heterogeneity, leading to the potential for regime shifts. Our stressor also had a strong negative effect on rare species, meaning that the purported importance of rare species as “insurance” in the face of environmental change may be overstated.  相似文献   
95.
96.
Biological traits analysis (BTA) links community structure to both ecological functions and response to environmental drivers through species’ attributes. In consequence, it has become a popular approach in marine benthic studies. However, BTA will reach a dead end if the scientific community does not acknowledge its current shortcomings and limitations: (a) uncertainties related to data origins and a lack of standardized reporting of trait information; (b) knowledge gaps on the role of multiple interacting traits on driving the organisms’ responses to environmental variability; (c) knowledge gaps regarding the mechanistic links between traits and functions; (d) a weak focus on the spatial and temporal variability that is inherent to the trait expression of species; and, last but not least, (e) the large reliance on expert knowledge due to an enormous knowledge gap on the basic ecology of many benthic species. BTA will only reach its full potential if the scientific community is able to standardize and unify the reporting and storage of traits data and reconsider the importance of baseline observational and experimental studies to fill knowledge gaps on the mechanistic links between biological traits, functions, and environmental variability. This challenge could be assisted by embracing new technological advances in marine monitoring, such as underwater camera technology and artificial intelligence, and making use of advanced statistical approaches that consider the interactive nature and spatio‐temporal variability of biological systems. The scientific community has to abandon some dead ends and explore new paths that will improve our understanding of individual species, traits, and the functioning of benthic ecosystems.  相似文献   
97.
The current study examined the relationship between skeletal muscle levels of adiponectin and parameters of insulin sensitivity. A high fat/sucrose diet (HFD) for 20 weeks resulted in significant increases in body weight, serum insulin, triglycerides (TG), and free fatty acids (FFA) (all p < 0.01). Interestingly, this diet leads to a slight increase in serum adiponectin, but significant decreases in gastrocnemius muscle and white adipose adiponectin (all p < 0.05). HFD for 4 weeks also resulted in a significant decrease in muscle adiponectin, which correlated with serum insulin, TG, and FFA (all p < 0.05). Treatment of the 4-week HFD rats with a PPARgamma agonist GI262570 ameliorated the diet-induced hyperinsulinemia and dyslipidemia, and effectively restored muscle adiponectin (all p < 0.05). This study demonstrated that HFD-induced hyperinsulinemia and dyslipidemia appeared without changes in serum adiponectin, but were associated with decreased tissue adiponectin. This provides the first evidence for a connection between tissue adiponectin and diet-induced hyperinsulinemia and dyslipidemia.  相似文献   
98.
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments.  相似文献   
99.
Hyperactivation of Ras is one of the most common abnormalities in acute myeloid leukemia. In experimental models, Ras inhibits myeloid differentiation, which is characteristic of leukemia; however, the mechanism through which it disrupts hematopoiesis is poorly understood. In multipotent FDCP-mix cells, Ras inhibits terminal neutrophil differentiation, thereby indefinitely extending their proliferative potential. Ras also strongly promotes the sensitivity of these cells to granulocyte-macrophage colony-stimulating factor (GM-CSF). Using this model, we have dissected the signaling elements downstream of Ras to determine their relative contribution to the dysregulation of hematopoiesis. Cells expressing Ras mutants selectively activating Raf (Ras*T35S) or phosphatidylinositol 3-kinase (Ras*Y40C) did not significantly affect differentiation or proliferative capacity, whereas Ras*E37G (which selectively activates RalGEFs) perpetuated proliferation and blocked neutrophil development in a manner similar to that of Ras. Correspondingly, expression of constitutively active versions of these effectors confirmed the overriding importance of Ral guanine nucleotide exchange factors. Cells expressing Ras demonstrated hyperactivation of Ral, which itself was able to exactly mimic the phenotype of Ras, including hypersensitivity to GM-CSF. Conversely, dominant negative Ral promoted spontaneous neutrophil development. Ral, in turn, appears to influence differentiation through multiple effectors. These data show, for the first time, the importance of Ral in regulating differentiation and self-renewal in hematopoietic cells.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号