首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1558篇
  免费   145篇
  国内免费   177篇
  2024年   6篇
  2023年   27篇
  2022年   47篇
  2021年   79篇
  2020年   73篇
  2019年   76篇
  2018年   61篇
  2017年   56篇
  2016年   69篇
  2015年   99篇
  2014年   103篇
  2013年   126篇
  2012年   123篇
  2011年   110篇
  2010年   72篇
  2009年   60篇
  2008年   71篇
  2007年   56篇
  2006年   53篇
  2005年   46篇
  2004年   63篇
  2003年   62篇
  2002年   72篇
  2001年   63篇
  2000年   31篇
  1999年   27篇
  1998年   19篇
  1997年   10篇
  1996年   22篇
  1995年   12篇
  1994年   11篇
  1993年   13篇
  1992年   13篇
  1991年   6篇
  1990年   9篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有1880条查询结果,搜索用时 31 毫秒
21.
22.
Ovarian carcinoma has the highest mortality among the malignant tumours in gynaecology, and new treatment strategies are urgently needed to improve the clinical status of ovarian carcinoma patients. The Cancer Genome Atlas (TCGA) cohort were performed to explore the immune function of the internal environment of tumours and its clinical correlation with ovarian carcinoma. Finally, four molecular subtypes were obtained based on the global immune-related genes. The correlation analysis and clinical characteristics showed that four subtypes were all significantly related to clinical stage; the immune scoring results indicated that most immune signatures were upregulated in C3 subtype, and the majority of tumour-infiltrating immune cells were upregulated in both C3 and C4 subtypes. Compared with other subtypes, C3 subtype had a higher BRCA1 mutation, higher expression of immune checkpoints, and optimal survival prognosis. These findings of the immunological microenvironment in tumours may provide new ideas for developing immunotherapeutic strategies for ovarian carcinoma.  相似文献   
23.
International Journal of Peptide Research and Therapeutics - Silk fibroin is an excellent raw material for medical products as it shows remarkable biocompatibility, water-based processing, and...  相似文献   
24.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
25.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
26.
Despite their high theoretical energy density and low cost, lithium–sulfur batteries (LSBs) suffer from poor cycle life and low energy efficiency owing to the polysulfides shuttle and the electronic insulating nature of sulfur. Conductivity and polarity are two critical parameters for the search of optimal sulfur host materials. However, their role in immobilizing polysulfides and enhancing redox kinetics for long‐life LSBs are not fully understood. This work has conducted an evaluation on the role of polarity over conductivity by using a polar but nonconductive platelet ordered mesoporous silica (pOMS) and its replica platelet ordered mesoporous carbon (pOMC), which is conductive but nonpolar. It is found that the polar pOMS/S cathode with a sulfur mass fraction of 80 wt% demonstrates outstanding long‐term cycle stability for 2000 cycles even at a high current density of 2C. Furthermore, the pOMS/S cathode with a high sulfur loading of 6.5 mg cm?2 illustrates high areal and volumetric capacities with high capacity retention. Complementary physical and electrochemical probes clearly show that surface polarity and structure are more dominant factors for sulfur utilization efficiency and long‐life, while the conductivity can be compensated by the conductive agent involved as a required electrode material during electrode preparation. The present findings shed new light on the design principles of sulfur hosts towards long‐life and highly efficient LSBs.  相似文献   
27.
28.
Zhang  Ziyi  Tang  Shengjie  Gui  Weiwei  Lin  Xihua  Zheng  Fenping  Wu  Fang  Li  Hong 《Journal of physiology and biochemistry》2020,76(2):317-328

Podocyte injury plays a key role in the occurrence and development of kidney diseases. Decreased autophagic activity in podocyte is closely related to its injury and the occurrence of proteinuria. Liver X receptors (LXRs), as metabolic nuclear receptors, participate in multiple pathophysiological processes and express in several tissues, including podocytes. Although the functional roles of LXRs in the liver, adipose tissue and intestine are well established; however, the effect of LXRs on podocytes function remains unclear. In this study, we used mouse podocytes cell line to investigate the effects of LXR activation on podocytes autophagy level and related signaling pathway by performing Western blotting, RT-PCR, GFP-mRFP-LC3 transfection, and immunofluorescence staining. Then, we tested this effect in STZ-induced diabetic mice. Transmission electron microscopy and immunohistochemistry were employed to explore the effects of LXR activation on podocytes function and autophagic activity. We found that LXR activation could inhibit autophagic flux through blocking the formation of autophagosome in podocytes in vitro which was possibly achieved by affecting AMPK, mTOR, and SIRT1 signaling pathways. Furthermore, LXR activation in vivo induced autophagy suppression in glomeruli, leading to aggravated podocyte injury. In summary, our findings indicated that activation of LXRs induced autophagy suppression, which in turn contributed to the podocyte injury.

  相似文献   
29.
Despite the improvement in acute myeloid leukemia (AML) treatments, most patients had a poor prognosis and suffered from chemoresistance and disease relapse. Therefore, there is an urgent need for elucidation of mechanism(s) underlying drug resistance in AML. In the present study, we found that AML cells showed less susceptibility to adriamycin (ADR) in the presence of hypoxia, while inhibition of hypoxia‐inducible factor 1α (HIF‐1α) by CdCl2 can make AML cells re‐susceptibile to ADR even under hypoxia. Moreover, HIF‐1α is overexpressed and plays an important role in ADR‐resistance maintenance in resistant AML cells. We further found hypoxia or induction of HIF‐1α can significantly upregulate yes‐associated protein (YAP) expression in AML cells, and resistant cells express a high level of YAP. Finally, we found that YAP may not only enhance HIF‐1α stability but also promote HIF‐1α's activity on the target gene pyruvate kinase M2. In conclusion, our data indicate that HIF‐1α or YAP may represent a therapeutic target for overcoming resistance toward adriamycin‐based chemotherapy in AML.  相似文献   
30.
Why the fruits are retained on dead upright herbaceous plants and how this relates to seed dispersal and timing of germination remain unclear. Stems of the annual Euclidium syriacum (Brassicaceae) with infructescences bearing indehiscent silicles remain upright after plants die in the spring. We investigated the effect of anatomical structures of stem and pedicle and delayed silicle dehiscence on seed dispersal phenology of this species. For comparison, sections were made of the stem of the annual Goldbachia laevigata (Brassicaceae), which has stems that fall over when plants die. Compared to G. laevigata, the stem of E. syriacum has vascular bundles that are closer together, a thicker xylem and phloem, more fibers, a thicker perimedullary zone and a smaller pith diameter:stem diameter ratio. The thickened pedicle did not form an abcission layer. By late October, 5–20% of seeds were dispersed, depending on the position of infructescences on the plant. Snow covered the plants in late autumn and when it melted in mid-April many of the plants had fallen over, with a high number of seeds germinating in attached silicles; seedlings became rooted in soil. After snowmelt, 14–15% of the silicles on the remaining upright plants contained seeds; all seeds were dispersed by early July. The anatomical structures of the stem and pedicle plus the delayed dehiscence of silicles explain the presence of an aerial seed bank in E. syriacum and delay of germination of many of seeds until spring. Further, pieces of upright plants are broken off and dispersed by wind, which helps to explain the wide distribution of E. syriacum in the cold desert.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号