首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   15篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   9篇
  2011年   14篇
  2010年   10篇
  2009年   11篇
  2008年   6篇
  2007年   9篇
  2006年   11篇
  2005年   9篇
  2004年   10篇
  2003年   3篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
21.
The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight‐year‐long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co‐located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long‐time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.  相似文献   
22.
This study evaluates a two-stage bioprocess for recovering bioenergy in the forms of hydrogen and methane while treating organic residues of ethanol fermentation from tapioca starch. A maximum hydrogen production rate of 0.77 mmol H2/g VSS/h can be achieved at volumetric loading rate (VLR) of 56 kg COD/m3/day. Batch results indicate that controlling conditions at S0/X0 = 12 with X0 = 4000 mg VSS/L and pH 5.5-6 are important for efficient hydrogen production from fermentation residues. Hydrogen-producing bacteria enriched in the hydrogen bioreactor are likely utilizing lactate and acetate for biohydrogen production from ethanol-fermentation residues. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 0.37 mmol CH4/g VSS/h at VLR of 8 kg COD/m3/day. Approximately 90% of COD in ethanol-fermentation residues can be removed and among that 2% and 85.1% of COD can be recovered in the forms of hydrogen and methane, respectively.  相似文献   
23.
An efficient 1,3-dipolar cycloaddition method was performed for the synthesis of a series of monofluoro- and trifluoromethane-3,5-disubstituted 1,2,4-triazoles. This efficient cycloaddition method was to react hydrazonoyl hydrochlorides with a series of aldehydes in the presence of NEt(3) as catalytic basic agent to provide the corresponding product in 28-94%. Their growth inhibitory results against cancer cells indicated that some of the fluorine- and trifluoromethane-containing compounds could effectively inhibit the growth of NCI-H226 and T-cell leukemia (Jurkat) cells. Among the compounds, trifluoromethane-containing 1,2,4-triazoles possessed the five-membered ring groups on the C-5 position of the triazolic ring, including cyclopentyl, 3-furyl, 3-thienyl, and 2-pyrrolyl, possessed the significant inhibitory activity for NCI-H226 cancer cells.  相似文献   
24.
25.
Mitochondrial aconitase (mACON) is the key enzyme for the citrate oxidation in the mitochondrial Krebs cycle. Cholesterol treatment (10 microg/ml of cholesterol and 1 microg/ml of 25-hydroxycholesterol) for 24 h stimulates mACON enzymatic activity in human prostatic carcinoma cells (PC-3) and hepatoma cells (HepG2). Mevastatin, a cholesterol synthesis antagonist, blocked the effect of cholesterol treatment on mACON. The cholesterol treatment stimulated mACON enzymatic activity, which enhanced the citrate utility but decreased intracellular ATP levels in PC-3 cells. The immunoblotting and transient gene expression assays demonstrated that cholesterol treatment enhances the gene expression of mACON. Mutation of the putative sterol response element (SRE) from GACGCCCCACT to GACGCCCATAT abolished the stimulating effects of cholesterol on the promoter activity of mACON gene. The results suggest that cholesterol treatment induces the mACON gene expression through the SRE signal transduction pathway. Our study demonstrated the deregulation of cholesterol on the citrate metabolism.  相似文献   
26.
N-Substituted isatin derivatives were prepared from the reaction of isatin and various bromides via two steps. Bioactivity assay results (in vitro tests) demonstrated that some of these compounds are potent and selective inhibitors against SARS coronavirus 3CL protease with IC50 values ranging from 0.95 to 17.50 microM. Additionally, isatin 4o exhibited more potent inhibition for SARS coronavirus protease than for other proteases including papain, chymotrypsin, and trypsin.  相似文献   
27.
28.
29.
30.
In the study, chitosan (CS) was conjugated with trimethyl groups for the synthesis of N-trimethyl chitosan (TMC) polymers with different degrees of quaternization. Nanoparticles (NPs) self-assembled by the synthesized TMC and poly(gamma-glutamic acid) (gamma-PGA, TMC/gamma-PGA NPs) were prepared for oral delivery of insulin. The loading efficiency and loading content of insulin in TMC/gamma-PGA NPs were 73.8 +/- 2.9% and 23.5 +/- 2.1%, respectively. TMC/gamma-PGA NPs had superior stability in a broader pH range to CS/gamma-PGA NPs; the in vitro release profiles of insulin from both test NPs were significantly affected by their stability at distinct pH environments. At pH 7.0, CS/gamma-PGA NPs became disintegrated, resulting in a rapid release of insulin, which failed to provide an adequate retention of loaded insulin, while the cumulative amount of insulin released from TMC/gamma-PGA NPs was significantly reduced. At pH 7.4, TMC/gamma-PGA NPs were significantly swelled and a sustained release profile of insulin was observed. Confocal microscopy confirmed that TMC40/gamma-PGA NPs opened the tight junctions of Caco-2 cells to allow the transport of insulin along the paracellular pathway. Transepithelial-electrical-resistance measurements and transport studies implied that CS/gamma-PGA NPs can be effective as an insulin carrier only in a limited area of the intestinal lumen where the pH values are close to the p K a of CS. In contrast, TMC40/gamma-PGA NPs may be a suitable carrier for transmucosal delivery of insulin within the entire intestinal tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号