首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22475篇
  免费   2004篇
  国内免费   850篇
  25329篇
  2024年   35篇
  2023年   245篇
  2022年   453篇
  2021年   774篇
  2020年   543篇
  2019年   669篇
  2018年   712篇
  2017年   678篇
  2016年   933篇
  2015年   1395篇
  2014年   1494篇
  2013年   1741篇
  2012年   2095篇
  2011年   1953篇
  2010年   1246篇
  2009年   1153篇
  2008年   1334篇
  2007年   1215篇
  2006年   1164篇
  2005年   985篇
  2004年   883篇
  2003年   775篇
  2002年   728篇
  2001年   220篇
  2000年   138篇
  1999年   172篇
  1998年   205篇
  1997年   160篇
  1996年   123篇
  1995年   107篇
  1994年   98篇
  1993年   105篇
  1992年   73篇
  1991年   79篇
  1990年   61篇
  1989年   51篇
  1988年   42篇
  1987年   41篇
  1986年   28篇
  1985年   58篇
  1984年   50篇
  1983年   33篇
  1982年   33篇
  1981年   38篇
  1980年   29篇
  1979年   20篇
  1978年   19篇
  1977年   24篇
  1976年   25篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-β signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6−19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.  相似文献   
52.
The objective of the study was to examine effect of backslop on the chemical and microbiological characteristics of fermented wheat (FW). Coarsely ground wheat was mixed with water (1:3 wt/wt) and inoculated with 6 log cfu ml(-1) each of an overnight culture of Lactobacillus plantarum and Pediococcus pentosaceus. Four fermentation treatments were conducted in 45 1, closed, PVC containers over 48 hours. Three treatments investigated the benefits of the addition of previously fermented wheat (backslopping, BSL) at different proportions (0.20, 0.33 or 0.42 kg) to freshly prepared wheat. The control treatment contained no addition of BSL. Elimination of coliforms from the FW within 48 h was only achieved through backslopping; where coliform bacteria counts decreased from approximately 6.5 log10 cfu ml(-1) to less than 3 log10 cfu ml(-1). There was no apparent advantage in increasing the backslop proportion above 0.20. However, the exclusion of coliform bacteria required the pH to remain below 4.0 for at a minimum of 24 h. The results of these studies indicate that fermentation of wheat has the potential to reduce the risk of feed-borne colibacillosis and provides a practical alternative to producers that cannot ferment multiple diets or have limited fermentation capacity.  相似文献   
53.
54.
In this work, we set out to identify and characterize the calcium occluded intermediate(s) of the plasma membrane Ca(2+)-ATPase (PMCA) to study the mechanism of calcium transport. To this end, we developed a procedure for measuring the occlusion of Ca(2+) in microsomes containing PMCA. This involves a system for overexpression of the PMCA and the use of a rapid mixing device combined with a filtration chamber, allowing the isolation of the enzyme and quantification of retained calcium. Measurements of retained calcium as a function of the Ca(2+) concentration in steady state showed a hyperbolic dependence with an apparent dissociation constant of 12 ± 2.2 μM, which agrees with the value found through measurements of PMCA activity in the absence of calmodulin. When enzyme phosphorylation and the retained calcium were studied as a function of time in the presence of La(III) (inducing accumulation of phosphoenzyme in the E(1)P state), we obtained apparent rate constants not significantly different from each other. Quantification of EP and retained calcium in steady state yield a stoichiometry of one mole of occluded calcium per mole of phosphoenzyme. These results demonstrate for the first time that one calcium ion becomes occluded in the E(1)P-phosphorylated intermediate of the PMCA.  相似文献   
55.
目的本试验旨在研究不同蛋白水平对实验藏酋猴生长性能和血液生化指标的影响并确定幼年实验藏酋猴的蛋白营养需要量。方法选用15只幼年实验藏酋猴随机分为5个处理组,每个处理3个重复,分别饲喂蛋白水平为11.1%、16.1%、20.5%、24.5%和29.8%的日粮,试验期90d。结果随着日粮中蛋白水平的提高,实验藏酋猴的增重、血清白蛋白、球蛋白、天门冬氨酸氨基转移酶、丙氨酸氨基转移酶和尿素氮含量显著增加(P〈0.05),而血清总蛋白、甘油三酯、γ-谷氨酰胺转移酶和碱性磷酸酶无显著差异。应用折线法确定幼年实验藏酋猴的蛋白营养需要量为23.69%。结论日粮蛋白水平对实验藏酋猴生长性能有显著影响,从生物学和经济学角度考虑,初步认为在本试验条件下,未成年实验藏酋猴日粮蛋白水平以23.69%最合适。  相似文献   
56.
57.
58.
The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.  相似文献   
59.
Proton-gated TASK-3 K+ channel belongs to the K2P family of proteins that underlie the K+ leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H+]. Use of recently solved K2P structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K+ ions mutually interact electrostatically in the confines of the extracellular ion pathway. K+ ions modulate the pKa of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K+ channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pHo sensors.  相似文献   
60.
Tian J  Zhang X  Liang B  Li S  Wu Z  Wang Q  Leng C  Dong J  Wang T 《PloS one》2010,5(12):e14218

Background

Programmed cell death plays an important role in mediating plant adaptive responses to the environment such as the invasion of pathogens. Verticillium wilt, caused by the necrotrophic pathogen Verticillium dahliae, is a serious vascular disease responsible for great economic losses to cotton, but the molecular mechanisms of verticillium disease and effective, safe methods of resistance to verticillium wilt remain unexplored.

Methodology/Principal Findings

In this study, we introduced baculovirus apoptosis inhibitor genes p35 and op-iap into the genome of cotton via Agrobacterium-mediated transformation and analyzed the response of transgenic plants to verticillium wilt. Results showed that p35 and op-iap constructs were stably integrated into the cotton genome, expressed in the transgenic lines, and inherited through the T3 generation. The transgenic lines had significantly increased tolerance to verticillium wilt throughout the developmental stages. The disease index of T1–T3 generation was lower than 19, significantly (P<0.05) better than the negative control line z99668. After treatment with 250 mg/L VD-toxins for 36 hours, DNA from negative control leaves was fragmented, whereas fragmentation in the transgenic leaf DNA did not occur. The percentage of cell death in transgenic lines increased by 7.11% after 60 mg/L VD-toxin treatment, which was less than that of the negative control lines''s 21.27%. This indicates that p35 and op-iap gene expression partially protects cells from VD-toxin induced programmed cell death (PCD).

Conclusion/Significance

Verticillium dahliae can trigger plant cells to die through induction of a PCD mechanism involved in pathogenesis. This paper provides a potential strategy for engineering broad-spectrum necrotrophic disease resistance in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号