首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22577篇
  免费   1984篇
  国内免费   979篇
  2024年   42篇
  2023年   251篇
  2022年   450篇
  2021年   758篇
  2020年   525篇
  2019年   668篇
  2018年   752篇
  2017年   686篇
  2016年   920篇
  2015年   1390篇
  2014年   1480篇
  2013年   1760篇
  2012年   2076篇
  2011年   1932篇
  2010年   1184篇
  2009年   1100篇
  2008年   1297篇
  2007年   1195篇
  2006年   1147篇
  2005年   932篇
  2004年   870篇
  2003年   768篇
  2002年   696篇
  2001年   291篇
  2000年   200篇
  1999年   215篇
  1998年   206篇
  1997年   182篇
  1996年   121篇
  1995年   120篇
  1994年   110篇
  1993年   111篇
  1992年   115篇
  1991年   101篇
  1990年   106篇
  1989年   80篇
  1988年   57篇
  1987年   56篇
  1986年   48篇
  1985年   77篇
  1984年   59篇
  1983年   43篇
  1982年   37篇
  1981年   40篇
  1980年   35篇
  1979年   24篇
  1978年   20篇
  1977年   25篇
  1976年   25篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Hypertension (HTN), i.e. abnormally high blood pressure, is a major risk factor for heart attack, stroke, and kidney failure. The Epithelial Sodium Channel (ENaC), one of the main transporters regulates blood pressure by tightly controlling the sodium reabsorption along the nephron. Recently, we have shown an α-ENaC overexpression in platelets from hypertensive patients compared to platelets from normotensive subjects, suggesting it makes a contribution to the activation state of platelets and the physiopathology of hypertension. However, the involvement of the α-ENaC localized in neutrophils to this disease remains unknown. Neutrophils are the first leukocytes to be recruited to an inflammatory site and are equipped with a strong ability to eliminate intra- or extracellular pathogens using reactive oxygen species or antibacterial proteins contained in their granules.Using the Western blotting (Wb), flow cytometry, and qRT-PCR approaches; we determined α-ENaC neutrophil overexpression at the protein and messenger RNA (mRNA) levels. By confocal and cytometry analysis, we determined the α-ENaC distribution and the heterogeneity of HTN neutrophils population, respectively. Immunoprecipitation and Wb assays demonstrated the presence of both α-ENaC and caveolin-1 phosphorylated forms, compared with neutrophils from healthy individuals. Although neutrophils from hypertensive subjects circulating in an activated state were exhibiting important oxidative stress and modifications registered by confocal, atomic force, and scanning electron microscope, they conserved their defense capabilities. The features described above for neutrophils from hypertensive patients could be attributed to α-ENaC overexpression, as its drug inhibition diminished their activation state modulating the actin cytoskeleton reorganization triggered during the activation process.  相似文献   
972.
Microbial biosynthesis has been extensively adapted for the production of commodity chemicals using renewable feedstocks. This study integrated metabolite biosensors into rationally designed microbial cocultures to achieve high-efficiency bioproduction of phenol from simple carbon substrate glucose. Specifically, two sets of E. coli–E. coli cocultures were first constructed for accommodation of two independent phenol biosynthesis pathways via 4-hydroxybenzoate (4HB) and tyrosine (TYR), respectively. Biosensor-assisted microbial cell selection mechanisms were subsequently incorporated into the coculture systems to address the insufficient pathway intermediate provision that limited the overall bioproduction. For the 4HB- and TYR-dependent pathways, this approach improved the phenol production by 2.3- and 3.9-fold, respectively, compared to the monoculture controls. Notably, the use of biosensor-assisted cell selection strategy in monocultures resulted in reduced phenol production, highlighting the advantage of coculture engineering for coupling with biosensing. After stepwise optimization, the phenol bioproduction yield of the engineered coculture's reached 0.057 g/g glucose. Furthermore, the coculture biosynthesis was successfully scaled up at both shake flask and bioreactor levels. Overall, the findings of this study demonstrate the outstanding potential of coupling biosensing and modular coculture engineering for advancing microbial biosynthesis of valuable molecules from renewable carbon substrates.  相似文献   
973.
In the last decades bacterial glycoengineering emerged as a new field as the result of the ability to transfer the Campylobacter jejuni N- glycosylation machinery into Escherichia coli for the production of recombinant glycoproteins that can be used as antigens for diagnosis, vaccines, and therapeutics. However, the identification of critical parameters implicated in the production process and its optimization to jump to a productive scale is still required. In this study, we developed a dual expression glycosylation vector for the production of the recombinant glycoprotein AcrA-O157, a novel antigen that allows the serodiagnosis of the infection with enterohemorrhagic E. coli O157 in humans. Volumetric productivity was studied in different culture media and found that 2xYP had 6.9-fold higher productivity than the extensively used LB. Subsequently, bioreactor batch and exponential-fed-batch cultures were designed to determine the influence of the specific growth rate (μ) on AcrA-O157 glycosylation efficiency, production kinetics, and specific productivity. At μmax, AcrA glycosylation with O157-polysaccharide and the specific synthesis rate were maximal, constituting the optimal physiological condition for AcrA-O157 production. Our findings should be considered for the design, optimization, and scaling up of AcrA-O157 production and other recombinant glycoproteins attractive for industrial applications.  相似文献   
974.
Research within the field of colloidal liquid aphrons (CLAs) for enzyme immobilization has often used ionic surfactants for the retention of enzymes. Although these charged interactions allow for enhanced immobilization, they can often lead to denaturation of enzyme activity, and even release of the protein. Sodium alginate has been used in drug delivery applications due to its low toxicity and charged interactions that allow for encapsulation. Hence, alginate systems can be used as an alternative to ionic surfactants in CLA immobilization. This paper presents, for the first time, the use of sodium alginate as potential ligand for enhanced CLA immobilization. The use of five model proteins; lysozyme, bovine serum albumin, ovalbumin, insulin, and α-chymotrypsin, of various pIs and hydrophobicities, showed the relevance of electrostatic interactions in promoting binding with sodium alginate when the pH < pI, with 100% immobilization attributed to alginate incorporated CLAs over general nonionic formulations. Furthermore, above their pI, >80% protein recovery was observed, with activity and conformation comparable to their native counterparts. Finally, the use of proteolysis showed that as the degree of ionic bonding increased between the protein and sodium alginate, the degree of protease resistance decreased due to conformational changes experienced during binding.  相似文献   
975.
976.
Heat shock protein 27 (Hsp27)/protein 53 (P53) plays an important role in testis development and spermatozoa regulation, but the relationship between Hsp27/P53 and infertility in cattle is unclear. Here, we focus on male cattle-yak and yak to investigate the expression and localization of Hsp27/P53 in testis tissues and to explore the influence of Hsp27/P53 on infertility. In our study, a total of 54 cattle (24 cattle-yak and 30 yak) were examined. The Hsp27 and P53 messenger RNA (mRNA) of cattle-yak were cloned, and amino acid variations in Hsp27 and P53 were found; the variations led to differences in the protein spatial structure compared with yak. We used real-time quantitative polymerase chain reaction and western blot to investigate whether the expression of Hsp27/P53 mRNA and protein was different in cattle-yak and yak. We found that the expression levels of Hsp27/P53 mRNA and protein were different in the testis developmental stages and the highest expression was observed in testicles during adulthood. Moreover, the Hsp27 expression was significantly higher in yak, whereas P53 expression was higher in cattle-yak (p < 0.01). On this basis, we detected the location of Hsp27/P53 in the testis by immunohistochemistry and immunofluorescence. The results demonstrated that Hsp27 was located in spermatogenic cells at different developmental stages and mesenchymal cells of the yak testicles. However, P53 was located in the primary spermatocyte and interstitial cells of the cattle-yak testicles. In summary, our study proved that the expression of Hsp27/P53 differed across the testis developmental stages and the expression of P53 was higher in the testis of cattle-yak, which suggested that the infertility of cattle-yak may be caused by the upregulation of P53.  相似文献   
977.
Benzo(a)pyrene (BaP) is an endocrine-disrupting pollutant present in various aspects of daily life, and studies have demonstrated that BaP exerts reproductive toxicity. We previously showed that BaP damages endometrial morphology and decreases the number of implantation sites in early pregnant mice, but the mechanisms underlying these effects remain unclear. The endometrial function is crucial for implantation, which is associated with endometrial cell apoptosis. In this study, we focused on the effect of BaP on endometrial cell apoptosis and the role of WNT signaling during this process. Pregnant mice were gavaged with corn oil (control group) or 0.2 mg·kg−1·day −1 BaP (treatment group) from Days 1 to 6 of pregnancy. BaP impaired endometrial function by decreasing the expression of HOXA10 and BMP2, two markers of receptivity and decidualization. WNT5A and β-catenin were activated in the BaP group. BaP affected the expression of apoptosis-related proteins and inhibited the apoptosis of endometrial stromal cells. In vitro, human endometrial stromal cells (HESCs) were treated with different concentrations of BaP (dimethyl sulfoxide (DMSO); 5, 10 µM). WNT5A and β-catenin were also upregulated in the BaP treatment group. HESC apoptosis was restrained by BaP. Inhibiting WNT5A by SFRP5 partially restored the effect of BaP on apoptosis. In summary, these results suggested that BaP exposure during early pregnancy activates WNT5A/β-catenin signaling pathway, which inhibits the endometrial cell apoptosis and potentially destroys endometrial function.  相似文献   
978.
This study evaluated the functional role of the highly generalist omnivore Melichthys niger in the remote St. Peter and St Paul's Archipelago (SPSPA), Brazil, where grazing herbivorous fishes are very scarce. We analysed patterns of distribution from zero to 30 m deep during three time intervals during the day and sampled different aspects of their feeding behaviour, including diel feeding rate, feeding substrate and diet. The density of M. niger increased with depth (26–30 m) and decreased by the end of the day. Although M. niger did not present a typical herbivore diel feeding pattern, they targeted the epilithic algal matrix as their primary feeding substrate, ingesting predominantly algae and detritus. The characteristic Caulerpa racemosa var. peltata from SPSPA was ingested only as detached fronds. We suggest that in the isolated SPSPA, the single species M. niger may perform a unique role as a link between benthic primary production and higher levels. Further studies on the trophic ecology of omnivorous species are necessary to better understand their roles in a reef system, especially in impoverished areas where they are likely to play a crucial role.  相似文献   
979.
Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose‐6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP‐activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt‐mediated improvements in neuronal glucose metabolism.  相似文献   
980.
Abrupt drought–flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought–flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought–flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought–flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought–flood alteration stress, which are factors that leads to the rice grain yield reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号