首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27114篇
  免费   2303篇
  国内免费   851篇
  2024年   31篇
  2023年   222篇
  2022年   434篇
  2021年   830篇
  2020年   597篇
  2019年   759篇
  2018年   831篇
  2017年   771篇
  2016年   1030篇
  2015年   1638篇
  2014年   1707篇
  2013年   2037篇
  2012年   2469篇
  2011年   2300篇
  2010年   1472篇
  2009年   1364篇
  2008年   1610篇
  2007年   1479篇
  2006年   1426篇
  2005年   1217篇
  2004年   1146篇
  2003年   971篇
  2002年   915篇
  2001年   273篇
  2000年   175篇
  1999年   218篇
  1998年   279篇
  1997年   223篇
  1996年   164篇
  1995年   147篇
  1994年   137篇
  1993年   148篇
  1992年   108篇
  1991年   105篇
  1990年   101篇
  1989年   83篇
  1988年   68篇
  1987年   60篇
  1986年   48篇
  1985年   80篇
  1984年   88篇
  1983年   55篇
  1982年   58篇
  1981年   62篇
  1980年   43篇
  1979年   31篇
  1978年   31篇
  1977年   30篇
  1976年   33篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
942.
943.
944.
Cotton provides us the most important natural fibre. High fibre quality is the major goal of cotton breeding, and introducing genes conferring longer, finer and stronger fibre from Gossypium barbadense to Gossypium hirsutum is an important breeding strategy. We previously analysed the G. barbadense fibre development mechanism by gene expression profiling and found two homoeologous fibre‐specific α‐expansins from G. barbadense, GbEXPA2 and GbEXPATR. GbEXPA2 (from the DT genome) is a classical α‐expansin, while its homoeolog, GbEXPATR (AT genome), encodes a truncated protein lacking the normal C‐terminal polysaccharide‐binding domain of other α‐expansins and is specifically expressed in G. barbadense. Silencing EXPA in G. hirsutum induced shorter fibres with thicker cell walls. GbEXPA2 overexpression in G. hirsutum had no effect on mature fibre length, but produced fibres with a slightly thicker wall and increased crystalline cellulose content. Interestingly, GbEXPATR overexpression resulted in longer, finer and stronger fibres coupled with significantly thinner cell walls. The longer and thinner fibre was associated with lower expression of a number of secondary wall‐associated genes, especially chitinase‐like genes, and walls with lower cellulose levels but higher noncellulosic polysaccharides which advocated that a delay in the transition to secondary wall synthesis might be responsible for better fibre. In conclusion, we propose that α‐expansins play a critical role in fibre development by loosening the cell wall; furthermore, a truncated form, GbEXPATR, has a more dramatic effect through reorganizing secondary wall synthesis and metabolism and should be a candidate gene for developing G. hirsutum cultivars with superior fibre quality.  相似文献   
945.
946.

Background

Mutations in the gene encoding for dysferlin cause recessive autosomal muscular dystrophies called dysferlinopathies. These mutations induce several alterations in skeletal muscles, including, inflammation, increased membrane permeability and cell death. Despite the fact that the etiology of dysferlinopathies is known, the mechanism that explains the aforementioned alterations is still elusive. Therefore, we have now evaluated the potential involvement of connexin based hemichannels in the pathophysiology of dysferlinopathies.

Results

Human deltoid muscle biopsies of 5 Chilean dysferlinopathy patients exhibited the presence of muscular connexins (Cx40.1, Cx43 and Cx45). The presence of these connexins was also observed in human myotubes derived from immortalized myoblasts derived from other patients with mutated forms of dysferlin. In addition to the aforementioned connexins, these myotubes expressed functional connexin based hemichannels, evaluated by ethidium uptake assays, as opposed to myotubes obtained from a normal human muscle cell line, RCMH. This response was reproduced in a knock-down model of dysferlin, by treating RCMH cell line with small hairpin RNA specific for dysferlin (RCMH-sh Dysferlin). Also, the presence of P2X7 receptor and the transient receptor potential channel, TRPV2, another Ca2+ permeable channels, was detected in the myotubes expressing mutated dysferlin, and an elevated resting intracellular Ca2+ level was found in the latter myotubes, which was in turn reduced to control levels in the presence of the molecule D4, a selective Cx HCs inhibitor.

Conclusions

The data suggests that dysferlin deficiency, caused by mutation or downregulation of dysferlin, promotes the expression of Cx HCs. Then, the de novo expression Cx HC causes a dysregulation of intracellular free Ca2+ levels, which could underlie muscular damage associated to dysferlin mutations. This mechanism could constitute a potential therapeutical target in dysferlinopathies.
  相似文献   
947.
Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.  相似文献   
948.
The effect of partial or total dietary substitution of fishmeal (FM) by vegetal protein sources on growth and feed efficiency was carried out in on-growing gilthead sea bream (mean initial weight 131 g). The Control diet (FM 100) contained FM as the primary protein source, while in Diets FM 25 and FM 0 the FM protein was replaced at 75% and 100%, respectively, by a vegetable protein mixture consisting of wheat gluten, soybean meal, rapeseed meal and crystalline amino acids. Diets FM 25 and FM 0 also contained krill meal at 47 g/kg in order to improve palatability. At the end of the trial (after 158 d), fish survival was above 90%. Final weight and the specific growth rate were statistically lower in fish fed the Control diet (361 g and 0.64%/d), compared with 390–396 g and 0.69–0.70%/d after feeding vegetal diets. No significant differences were found regarding feed intake and feed conversion ratio. The digestibility of protein and amino acids (determined with chromium oxide as indicator) was similar in all diets. The blood parameters were not significantly affected by treatments. The activity of trypsin and pepsin was significantly reduced after feeding Diet FM 0. In the distal intestine, the villi length in fish fed Diet FM 25 was significantly longer and the intestine of the fish fed the FM 100 diet showed a smaller number of goblet cells. In conclusion, a total FM substitution by a vegetal mix supplemented with synthetic amino acids in on-growing sea bream is feasible.  相似文献   
949.
We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered a G2/M growth arrest in Gdap1-null cells undergoing reprogramming. High-Content analysis showed that this growth arrest was DNA damage-independent. We propose that lack of efficient mitochondrial fission impairs cell reprogramming by interfering with cell cycle progression in a DNA damage-independent manner.  相似文献   
950.
Rectal cancer represents about 30% of colorectal cancers, being around 50% locally advanced at presentation. Chemoradiation (CRT) followed by total mesorectal excision is the standard of care for these locally advanced stages. However, it is not free of adverse effects and toxicity and the complete pathologic response rate is between 10% and 30%. This makes it extremely important to define factors that can predict response to this therapy. Focal adhesion kinase (FAK) expression has been correlated with worse prognosis in several tumours and its possible involvement in cancer radio‐ and chemosensitivity has been suggested; however, its role in rectal cancer has not been analysed yet. To analyse the association of FAK expression with tumour response to CRT in locally advanced rectal cancer. This study includes 73 patients with locally advanced rectal cancer receiving standard neoadjuvant CRT followed by total mesorectal excision. Focal adhesion kinase protein levels were immunohistochemically analysed in the pre‐treatment biopsies of these patients and correlated with tumour response to CRT and patients survival. Low FAK expression was significantly correlated with local and distant recurrence (P = 0.013). Low FAK expression was found to be a predictive marker of tumour response to neoadjuvant therapy (P = 0.007) and patients whose tumours did not express FAK showed a strong association with lower disease‐free survival (P = 0.01). Focal adhesion kinase expression predicts neoadjuvant CRT response in rectal cancer patients and it is a clinically relevant risk factor for local and distant recurrence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号