首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18452篇
  免费   1666篇
  国内免费   847篇
  2024年   25篇
  2023年   179篇
  2022年   348篇
  2021年   647篇
  2020年   445篇
  2019年   568篇
  2018年   586篇
  2017年   572篇
  2016年   754篇
  2015年   1152篇
  2014年   1246篇
  2013年   1443篇
  2012年   1736篇
  2011年   1621篇
  2010年   1020篇
  2009年   957篇
  2008年   1108篇
  2007年   1000篇
  2006年   960篇
  2005年   802篇
  2004年   745篇
  2003年   644篇
  2002年   604篇
  2001年   184篇
  2000年   107篇
  1999年   145篇
  1998年   171篇
  1997年   140篇
  1996年   99篇
  1995年   91篇
  1994年   78篇
  1993年   92篇
  1992年   66篇
  1991年   66篇
  1990年   57篇
  1989年   41篇
  1988年   36篇
  1987年   35篇
  1986年   26篇
  1985年   56篇
  1984年   46篇
  1983年   26篇
  1982年   28篇
  1981年   33篇
  1980年   28篇
  1979年   19篇
  1978年   17篇
  1977年   20篇
  1976年   18篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
191.
Rhodospirillum rubrum strain F24.1 is a spontaneous revertant of nonphototrophic mutant F24 derived from wild-type strain S1. Strain F24 shows no detectable photochemical activity and contains, at most, traces of the photoreaction center polypeptides. Strain F24.1 has a phototrophic growth rate close to that of the wild-type strain (Picorel, R., del Valle-Tascón, S. and Ramírez, J.M. (1977) Arch. Biophys. Biochem. 181, 665–670) but shows little photochemical activity. Light-induced absorbance changes in the near-infrared, photoinduced EPR signals and ferricyanide-elicited absorbance changes indicate that strain F24.1 has a photoreaction center content of 7–8% as compared to strain S1. Polyacrylamide gel electrophoresis of isolated F24.1 chromatophores shows the photoreaction center polypeptides to be present in amounts compatible with this value. Photoreaction center was prepared from strain F24.1 and showed no detectable difference with that of strain S1. It is concluded that strain F24.1 photosynthesis is due entirely to its residual 7–8% of typical photoreaction center.  相似文献   
192.

1. 1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min.

2. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP.

3. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2′-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site.

4. 4. The nucleotide specificities of ‘coupled processes’ nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.

5. 5. The different nucleotide specificities of uncoupled ATP hydrolysis and coupled processes can be explained even if both processes involve a single common site on the ATPase molecule. This model requires that energy can be ‘coupled’ only when it is released/utilised in the nucleotide binding steps of the mechanism.

6. 6. Adenosine β,γ-imidotriphosphate (AMP-PNP) is not a simple reversible inhibitor of the ATPase, since incubation requires preincubation and is not reversed when the compound is diluted out, or by addition of ATP. This compound inhibits the isolated and membrane-bound ATPase equally well. Its guanosine analogue does not act in this way.

7. 7. In submitochondrial particles, ADP inhibited uncoupled hydrolysis of ATP much more effectively than coupled hydrolysis, the latter being measured both directly (from ATP hydrolysis in the absence of uncoupler) or indirectly, by monitoring ATP-driven reduction of NAD+ by succinate.

8. 8. The effects of ADP and AMP-PNP were interpreted as providing evidence for two of the intermediates in the proposed scheme for coupled triphosphate hydrolysis.

Abbreviations: ε-ATP, N1,N6-ethenoadenosine triphosphate; 8-BrATP, 8-bromoadenosine triphosphate; AMP-PNP, adenosine β,γ-imidotriphosphate; GMP-PNP, guanosine β,γ-imidotriphosphate; N1,O-ATP, adenosine-N1-oxide triphosphate; rro-ATP 2,2′[1-(9-adenyl)-1′-(triphosphoryl-oxymethyl)-dihydroxydiethyl ether; and similarly for the respective diphosphates; NTP, NDP, nucleoside tri-, diphosphate; ANS, 1-anilino-8-naphthalene sulphonate; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; HEPES, N-2-hydroxyethylpiperazine-N′-2-ethane sulphonic acid; MES, 2-(N-morpholino)-ethane sulphonic acid; TES, tris(hydroxymethyl)methylamino ethane sulphonic acid  相似文献   

193.
Summary A phosphate-limited resting cell system ofStreptomyces griseus in a synthetic medium has been developed in which biosynthesis of the polyene macrolide, candicidin, is linear for at least 36 h without cell growth. Glucose and to a lesser degree sucrose, but not lactose, support antibiotic synthesis. Glucose is utilized at a constant rate for antibiotic synthesis without affecting mycelial dry weight. Acetate and propionate, the building units of the macrolide aglycone, stimulate candicidin biosynthesis in cultures supplemented with glucose but do not support its synthesis in the absence of glucose. Maximal stimulation of candicidin biosynthesis was produced by 40 mM propionate or 250 mM acetate. The biosynthetic intermediate, methyl malonate, and the analog, 1-propanol, were more stimulatory than propionate at the same concentration.  相似文献   
194.
195.
Photosynthetic fructose-1,6-diphosphatase (FDPase) fractions I and II, earlier purified from spinach leaves, show a similar amino acid composition, with the exception of a higher glutamic acid content in the latter. In both fractions glutamic and aspartic acids are the main amino acids. pH activity profiles of fractions I and II are similar, with optima at 8·65–8·70, both showing a high specificity for fructose- 1,6-diphosphate. These two fractions are Mg2+-dependent for activity, with an Optimum Mg2+ concentration of 10 mM in standard conditions, which shifts to 5 mM when the MG2+/EDTA ratio is increased to 10; Mn2+ and Co2+ are slightly active. EDTA enhances FDPase activity slightly, with an optimum at 0·4–0·8 mM. Cysteine has no activating effect, and acts as an inhibitor above 10 mM. Both I and II have an optimum substrate concentration of 4 mM, and the substrate inhibits at concns above this value. Kinetic velocity curves are sigmoidal, with the concave zone located in the range of physiological substrate concns. (Hill coefficient 1·75 for both). This suggests a strong regulatory role of fructose-1,6-diphosphate. Km values are 1·4 × 10−3 M (fraction I) and 1·1 × 10−3 M (fraction II). The highest activity rate occurs at 60°, in accordance with the high thermostability of both fractions; the activation energies are 14·3 kcal/mol (fraction I) and 13·0 kcal/mol (fraction II).  相似文献   
196.
The uptake of methyl α-d-glucopyranoside (α-MG) by Escherichia coli K12 was decreased by the addition of substrates which stimulated the rate of oxygen consumption by the cells. The inhibition, which occurred only at non-saturating concentrations of α-MG, was not the result of a stimulation of the rate of exit of intracellular α-MG, and was abolished by the presence of carbonyl cyanide m-chlorophenylhydrazone or sodium azide. Since those drugs inhibit energy conservation at the respiratory chain and did not alter significantly the rate of oxygen consumption under the conditions for the assay of α-MG uptake, it appears that the inhibition of the transport system by respirable substrates is mediated by some form of energy derived from respiration.  相似文献   
197.
198.
The oldest known estuarine bivalve assemblage is documented from the Lower Ordovician (upper Arenig-lower Llanvirn) Alto del Cóndor Formation, which crops out in the Cordillera Oriental of northwestern Argentina. This unit displays most of the diagnostic sedimentary attributes of estuarine environments. Biotic components include low-diversity trace fossils and a peculiar bivalve fauna consisting of the new genera Konduria, Pseudoredonia, and Pucamya, and the new species Redonia condorensis. This constitutes the earliest known occurrence of bivalves in brackish waters, suggesting that the capability of this clade to colonize estuarine environments developed early in their radiation.  相似文献   
199.
200.
Plant peroxisomes have the capacity to generate different reactive oxygen and nitrogen species(ROS and RNS),such as H_2O_2,superoxide radical(O_2~-),nitric oxide and peroxynitrite(ONOO~-).These organelles have an active nitrooxidative metabolism which can be exacerbated by adverse stress conditions.Hydrogen sulfide(H_2S)is a new signaling gasotransmitter which can mediate the posttranslational modification(PTM)persulfidation.We used Arabidopsis thaliana transgenic seedlings expressing cyan fluorescent protein(CFP)fused to a canonical peroxisome targeting signal 1(PTS1)to visualize peroxisomes in living cells,as well as a specific fluorescent probe which showed that peroxisomes contain H_2S.H_2S was also detected in chloroplasts under glyphosate-induced oxidative stress conditions.Peroxisomal enzyme activities,including catalase,photorespiratory H_2O_2-generating glycolate oxidase(GOX)and hydroxypyruvate reductase(HPR),were assayed in vitro with a H_2S donor.In line with the persulfidation of this enzyme,catalase activity declined significantly in the presence of the H_2S donor.To corroborate the inhibitory effect of H_2S on catalase activity,we also assayed pure catalase from bovine liver and pepper fruit-enriched samples,in which catalase activity was inhibited.Taken together,these data provide evidence of the presence of H_2S in plant peroxisomes which appears to regulate catalase activity and,consequently,the peroxisomal H_2O_2 metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号