首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18160篇
  免费   1648篇
  国内免费   837篇
  2024年   18篇
  2023年   176篇
  2022年   274篇
  2021年   637篇
  2020年   439篇
  2019年   560篇
  2018年   579篇
  2017年   563篇
  2016年   746篇
  2015年   1137篇
  2014年   1230篇
  2013年   1425篇
  2012年   1711篇
  2011年   1604篇
  2010年   1007篇
  2009年   947篇
  2008年   1096篇
  2007年   988篇
  2006年   954篇
  2005年   793篇
  2004年   738篇
  2003年   636篇
  2002年   598篇
  2001年   184篇
  2000年   107篇
  1999年   142篇
  1998年   170篇
  1997年   139篇
  1996年   99篇
  1995年   91篇
  1994年   78篇
  1993年   91篇
  1992年   66篇
  1991年   64篇
  1990年   56篇
  1989年   40篇
  1988年   36篇
  1987年   34篇
  1986年   26篇
  1985年   54篇
  1984年   45篇
  1983年   26篇
  1982年   28篇
  1981年   33篇
  1980年   28篇
  1979年   19篇
  1978年   17篇
  1977年   20篇
  1976年   18篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
101.
The structures of cell-wall mannans isolated from Aphamoascus mephitalus, A. Fulvescens, A. verrucosus, and A. reticulisporus have been investigated by chemical analyses and 1D and 2D 1H and 13C NMR techniques. It was found that all of them consists of a relatively simple comb-like structure of the disaccharide repeating block {→ 6)-[-Man p-(1 → 2)]--Man p-(1 →}. The conformations around the -(1 → 2) and -(1 → 6) linkages in thes kinds of polymers were also studied by using molecular mechanics and dynamics calculations, together with NOE data. The results are similar to those found within the oligosaccharide chains of glycoproteins, with a well-defined conformation for the -(1 → 2) linkage and a certain restriction around the -(1 → 6) bonding imposed by the 2-substitution.  相似文献   
102.
The roles of sulfhydryl and disulfide groups in the specific binding of synthetic cannabinoid CP-55,940 to the cannabinoid receptor in membrane preparations from the rat cerebral cortex have been examined. Various sulfhydryl blocking reagents including p-chloromercuribenzoic acid (p-CMB), N-ethylmaleimide (NEM), o-iodosobenzoic acid (o-ISB), and methyl methanethiosulfonate (MMTS) inhibited the specific binding of [3H]CP-55,940 to the cannabinoid receptor in a dose-dependent manner. About 80–95% inhibition was obtained at a 0.1 mM concentration of these reagents. Scatchard analysis of saturation experiments indicates that most of these sulfhydryl modifying reagents reduce both the binding affinity (Kd) and capacity (Bmax). On the other hand, DL-dithiothreitol (DTT), a disulfide reducing agent, also irreversibly inhibited the specific binding of [3H]CP-55,940 to the receptor and about 50% inhibition was obtained at a 5 mM concentration. Furthermore, 5mM DTT was abelt to dissociate 50% of the bound ligand from the ligand-receptor complex. The marked inhibition of [3H]CP-55,940 binding by sulfhydryl reagents suggests that at least one free sulfhydryl group is essential to the binding of the ligand to the receptor. In addition, the inhibition of the binding by DTT implies that besides free sulfhydryl group(s), the integrity of a disulfide bridge is also important for [3H]CP-55,940 binding to the cannabinoid receptor.  相似文献   
103.
Journal of Physiology and Biochemistry - We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells....  相似文献   
104.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
105.
106.
Functional analysis of pSM19035-derived replicons in Bacillus subtilis   总被引:3,自引:0,他引:3  
Abstract Cells of isolates of Thermus from hot springs in New Zealand were tested for the composition of peptidoglycan, the occurrence of respiratory quinones and the mean base composition of DNA. The DNA: DNA homology was tested by the filter hybridisation and spectrophotometric reassociation rate methods. Thermus filiformis and non-filamentous strains isolated from New Zealand hot springs show great homogeneity, and have low DNA: DNA homology with the species Thermus aquaticus , ' Thermus thermophilus' , and a new genospecies, Thermus brockianus .  相似文献   
107.
Ectotherms thermoregulate to maintain their body temperature within the optimal range needed for performing vital functions. The effect of climate change on lizards has been studied as regards the sensitivity of locomotor performance to environmental temperatures. We studied thermoregulatory efficiency and locomotor performance for Liolaemus fitzgeraldi in the Central Andes of Argentina. We determined body temperature, micro-environmental temperatures and operative temperatures in the field. In the laboratory, we measured preferred temperatures and calculated the index of thermoregulatory efficiency. We estimated the thermal sensitivity of locomotion by measuring sprint speed (initial velocity and long sprint) and endurance at five different body temperatures. Body temperature was not associated with either micro-environmental temperature, nor did it show differences with preferred temperatures. Thermoregulatory efficiency was moderate (0.61). Initial velocity and long sprint trials showed differences at different temperatures; however, endurance did not. Moreover, the optimal temperatures for the performance trials showed no significant differences among themselves. We conclude that Liolaemus fitzgeraldi has thermal sensitivity in locomotor performance with respect to body temperature and that it is an eurythermic lizard that experiences a large variation in body temperature and that has thermal flexibility in the cold.  相似文献   
108.
Tropical montane communities host the world's highest beta diversity of birds, a phenomenon usually attributed to community turnover caused by changes in biotic and abiotic factors along elevation gradients. Yet, empirical data on most biotic factors are lacking. Nest predation is thought to be especially important because it appears to be common and can change selective pressures underlying life history traits, which can alter competitive interactions. We monitored 2538 nests, 338 of which had known nest predators, to evaluate if nest predation changes along a tropical elevational gradient. We found that nest predation decreased with elevation, reflecting the loss of lowland predators that do not tolerate colder climates. We found different “super” nest predators at each elevation that accounted for a high percentage of events, suggesting that selection pressures exerted by nest predator communities may be less diffuse than has been hypothesized, at least for birds nesting in the understory.  相似文献   
109.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号