全文获取类型
收费全文 | 312篇 |
免费 | 22篇 |
专业分类
334篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 5篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 8篇 |
2014年 | 17篇 |
2013年 | 24篇 |
2012年 | 24篇 |
2011年 | 19篇 |
2010年 | 19篇 |
2009年 | 14篇 |
2008年 | 18篇 |
2007年 | 23篇 |
2006年 | 22篇 |
2005年 | 16篇 |
2004年 | 16篇 |
2003年 | 14篇 |
2002年 | 14篇 |
2001年 | 7篇 |
2000年 | 8篇 |
1999年 | 9篇 |
1997年 | 3篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 3篇 |
1988年 | 2篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1975年 | 3篇 |
1974年 | 2篇 |
1972年 | 2篇 |
1971年 | 1篇 |
1967年 | 1篇 |
1948年 | 1篇 |
1920年 | 1篇 |
排序方式: 共有334条查询结果,搜索用时 15 毫秒
31.
Nigel E. Stork 《Biodiversity and Conservation》2010,19(2):357-371
There is a widespread belief that we are experiencing a mass extinction event similar in severity to previous mass extinction
events in the last 600 million years where up to 95% of species disappeared. This paper reviews evidence for current extinctions
and different methods of assessing extinction rates including species–area relationships and loss of tropical forests, changing
threat status of species, co-extinction rates and modelling the impact of climate change. For 30 years some have suggested
that extinctions through tropical forest loss are occurring at a rate of up to 100 species a day and yet less than 1,200 extinctions
have been recorded in the last 400 years. Reasons for low number of identified global extinctions are suggested here and include
success in protecting many endangered species, poor monitoring of most of the rest of species and their level of threat, extinction
debt where forests have been lost but species still survive, that regrowth forests may be important in retaining ‘old growth’
species, fewer co-extinctions of species than expected, and large differences in the vulnerability of different taxa to extinction
threats. More recently, others have suggested similar rates of extinction to earlier estimates but with the key cause of extinction
being climate change, and in particular rising temperatures, rather than deforestation alone. Here I suggest that climate
change, rather than deforestation is likely to bring about such high levels of extinction since the impacts of climate change
are local to global and that climate change is acting synergistically with a range of other threats to biodiversity including
deforestation. 相似文献
32.
In cerebellar granule cells, the mitogen-activated protein kinase (MAPK) or extracellular signal-regulated kinase (ERK) cascade mediates multiple functions, including proliferation, differentiation, and survival. In these cells, ERKs are activated by diverse stimuli, including cyclic adenosine monophosphate (cAMP), pituitary adenylate cyclase activating protein (PACAP), depolarization induced by elevated extracellular potassium (KCl), and the neurotrophin brain-derived neurotrophic factor. Extensive studies in neuronal cell lines have implicated the small G proteins Ras and Rap1 in the activation of ERKs by cAMP, PACAP, and KCl. However, the requirement of Ras and Rap1 in these pathways in cerebellar granule cells has not been addressed. In this study, we utilize multiple biochemical assays to determine the mechanisms of action and requirement of Ras and Rap1 in cultured cerebellar granule cells. We show that both Ras and Rap1 can be activated by cAMP or PACAP via protein kinase (PKA)-dependent mechanisms. KCl activation of Ras also required PKA. Using both adenoviral and transgenic approaches, we show that Ras plays a major role in ERK activation by cAMP, PACAP, and KCl, while Rap1 also mediates activation of a selective membrane-associated pool of ERKs. Furthermore, Rap1, but not Ras, activation by PKA appears to require the action of Src family kinases. 相似文献
33.
Heidi A. Schreiber Paul D. Hulseberg JangEun Lee Jozsef Prechl Peter Barta Nora Szlavik Jeffrey S. Harding Zsuzsanna Fabry Matyas Sandor 《PloS one》2010,5(7)
Background
Mycobacterium-induced granulomas are the interface between bacteria and host immune response. During acute infection dendritic cells (DCs) are critical for mycobacterial dissemination and activation of protective T cells. However, their role during chronic infection in the granuloma is poorly understood.Methodology/Principal Findings
We report that an inflammatory subset of murine DCs are present in granulomas induced by Mycobacteria bovis strain Bacillus Calmette-guerin (BCG), and both their location in granulomas and costimulatory molecule expression changes throughout infection. By flow cytometric analysis, we found that CD11c+ cells in chronic granulomas had lower expression of MHCII and co-stimulatory molecules CD40, CD80 and CD86, and higher expression of inhibitory molecules PD-L1 and PD-L2 compared to CD11c+ cells from acute granulomas. As a consequence of their phenotype, CD11c+ cells from chronic lesions were unable to support the reactivation of newly-recruited, antigen 85B-specific CD4+IFNγ+ T cells or induce an IFNγ response from naïve T cells in vivo and ex vivo. The mechanism of this inhibition involves the PD-1:PD-L signaling pathway, as ex vivo blockade of PD-L1 and PD-L2 restored the ability of isolated CD11c+ cells from chronic lesions to stimulate a protective IFNγ T cell response.Conclusions/Significance
Our data suggest that DCs in chronic lesions may facilitate latent infection by down-regulating protective T cell responses, ultimately acting as a shield that promotes mycobacterium survival. This DC shield may explain why mycobacteria are adapted for long-term survival in granulomatous lesions. 相似文献34.
In all complex organisms, glial cells are pivotal for neuronal development and function. Insects are characterized by having only a small number of these cells, which nevertheless display a remarkable molecular diversity. An intricate relationship between neurons and glia is initially required for glial migration and during axonal patterning. Recent data suggest that in organisms such as Drosophila, a prime role of glial cells lies in setting boundaries to guide and constrain axonal growth. 相似文献
35.
36.
Rishi V Gal J Krylov D Fridriksson J Boysen MS Mandrup S Vinson C 《The Journal of biological chemistry》2004,279(12):11863-11874
The mammalian SREBP family contains two genes that code for B-HLH-ZIP proteins that bind sequence-specific DNA to regulate the expression of genes involved in lipid metabolism. We have designed a dominant negative (DN), termed A-SREBP-1, that inhibits the DNA binding of either SREBP protein. A-SREBP-1 consists of the dimerization domain of B-SREBP-1 and a polyglutamic acid sequence that replaces the basic region. A-SREBP-1 heterodimerizes with either B-SREBP-1 or B-SREBP-2, and both heterodimers are more stable than B-SREBP-1 bound to DNA. Circular dichroism thermal denaturation studies show that the B-SREBP-1.A-SREBP-1 heterodimer is -9.8 kcal mol(-1) dimer(-1) more stable than the B-SREBP-1 homodimer. EMSA assays demonstrate that A-SREBP-1 can inhibit the DNA binding of either B-SREBP-1 or B-SREBP-2 in an equimolar competition but does not inhibit the DNA binding of the three B-HLH-ZIP proteins MAX, USF, or MITF, even at 100 molar eq. Chimeric proteins containing the HLH domain of SREBP-1 and the leucine zipper from either MAX, USF, or MITF indicate that both the HLH and leucine zipper regions of SREBP-1 contribute to its dimerization specificity. Transient co-transfection studies demonstrate that A-SREBP-1 can inhibit the transactivation of SREBP-1 and SREBP-2 but not USF. A-SREBP-1 may be useful in metabolic diseases where SREBP family members are overexpressed. 相似文献
37.
Karman J Ling C Sandor M Fabry Z 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(4):2353-2361
The contribution of dendritic cells (DCs) to initiating T cell-mediated immune response in and T cell homing into the CNS has not yet been clarified. In this study we show by confocal microscopy and flow cytometry that cells expressing CD11c, CD205, and MHC class II molecules and containing fluorescently labeled, processed Ag accumulate at the site of intracerebral Ag injection. These cells follow a specific pattern upon migrating out of the brain. To track their pathway out of the CNS, we differentiated DCs from bone marrow of GFP-transgenic mice and injected them directly into brains of naive C57BL/6 mice. We demonstrate that DCs migrate from brain to cervical lymph nodes, a process that can be blocked by fixation or pertussis toxin treatment of the DCs. Injection of OVA-loaded DCs into brain initiates a SIINFEKL (a dominant OVA epitope)-specific T cell response in lymph nodes and spleen, as measured by specific tetramer and LFA-1 activation marker staining. Additionally, a fraction of activated SIINFEKL-specific T cells home to the CNS. Specific T cell homing to the CNS, however, cannot be induced by i.v. injection of OVA-loaded DCs alone. These data suggest that brain-emigrant DCs are sufficient to support activated T cells to home to the tissue of DC origination. Thus, initiation of immune reactivity against CNS Ags involves the migration of APCs from nervous tissue to peripheral lymphoid tissues, similarly to that in other organs. 相似文献
38.
Throughout development cell-cell interactions are of pivotal importance. Cells bind to each other or share information via secreted signaling molecules. To a large degree, these processes are modulated by post-translational modifications of membrane proteins. Glycan-chains are frequently added to membrane proteins and assist their exact function at the cell surface. In addition, the glycosylation pathway is required to generate GPI-linkage in the endoplasmatic reticulum. Here, we describe the analysis of the cabrio/mummy gene, which encodes an UDP-N-acetylglucosamine diphosphorylase. This is a well-conserved and central enzyme in the glycosylation pathway. As expected from this central role in glycosylation, cabrio/mummy mutants show many phenotypic traits ranging from CNS fasciculation defects to defects in dorsal closure and eye development. These phenotypes correlate well with specific glycosylation and GPI-anchorage defects in mummy mutants. 相似文献
39.
Tie Y Wang YF Boross PI Chiu TY Ghosh AK Tozser J Louis JM Harrison RW Weber IT 《Protein science : a publication of the Protein Society》2012,21(3):339-350
Clinical inhibitor amprenavir (APV) is less effective on HIV‐2 protease (PR2) than on HIV‐1 protease (PR1). We solved the crystal structure of PR2 with APV at 1.5 Å resolution to identify structural changes associated with the lowered inhibition. Furthermore, we analyzed the PR1 mutant (PR1M) with substitutions V32I, I47V, and V82I that mimic the inhibitor binding site of PR2. PR1M more closely resembled PR2 than PR1 in catalytic efficiency on four substrate peptides and inhibition by APV, whereas few differences were seen for two other substrates and inhibition by saquinavir (SQV) and darunavir (DRV). High resolution crystal structures of PR1M with APV, DRV, and SQV were compared with available PR1 and PR2 complexes. Val/Ile32 and Ile/Val47 showed compensating interactions with SQV in PR1M and PR1, however, Ile82 interacted with a second SQV bound in an extension of the active site cavity of PR1M. Residues 32 and 82 maintained similar interactions with DRV and APV in all the enzymes, whereas Val47 and Ile47 had opposing effects in the two subunits. Significantly diminished interactions were seen for the aniline of APV bound in PR1M and PR2 relative to the strong hydrogen bonds observed in PR1, consistent with 15‐ and 19‐fold weaker inhibition, respectively. Overall, PR1M partially replicates the specificity of PR2 and gives insight into drug resistant mutations at residues 32, 47, and 82. Moreover, this analysis provides a structural explanation for the weaker antiviral effects of APV on HIV‐2. 相似文献
40.
Amino-terminal sequences of prosomatostatin direct intracellular targeting but not processing specificity 总被引:15,自引:0,他引:15
Rat preprosomatostatin (rPPSS) is processed to two bioactive peptides, somatostatin-14 and somatostatin-28. In anglerfish islets, the two peptides are synthesized by distinct cell types and are derived from different precursors, anglerfish preprosomatostatin-1 (a(I)PPSS) and anglerfish preprosomatostatin-2 (a(II)PPSS). To determine the basis of the differential processing, we introduced a(I)PPSS or a(II)PPSS expression vectors into mammalian endocrine cell lines that can accomplish both patterns of processing. Both precursors were processed identically, indicating that cellular factors must determine the processing pattern. Although similar processing sites are present in both precursors, high levels of unprocessed anglerfish prosomatostatin-2 were secreted constitutively from the transfected cells. A hybrid protein containing the leader sequence and a portion of the pro-region of rPPSS fused to the carboxy-terminal third of a(II)PPSS was processed and secreted via a regulated pathway. We conclude that the amino-terminal 78 residues of rPPSS contain sufficient information to correct the targeting deficiency of a(II)PPSS in mammalian endocrine cell lines. 相似文献