首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   35篇
  374篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   5篇
  2014年   17篇
  2013年   17篇
  2012年   23篇
  2011年   19篇
  2010年   19篇
  2009年   12篇
  2008年   24篇
  2007年   33篇
  2006年   22篇
  2005年   18篇
  2004年   19篇
  2003年   12篇
  2002年   16篇
  2001年   11篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1983年   5篇
  1979年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1969年   2篇
  1968年   5篇
  1966年   2篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1952年   1篇
  1931年   1篇
  1926年   1篇
  1924年   1篇
  1922年   1篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
101.
The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus promotes cell entry by inducing fusion of the viral membrane with an intracellular membrane after uptake by endocytosis. This protein differs from other well-studied viral and cellular fusion proteins because of its distinct molecular architecture and apparent lack of involvement of coiled coils in the low-pH-induced structural transitions that lead to fusion. A highly conserved loop (the cd loop), which resides at the distal tip of each subunit and is mostly buried in the subunit interface of the native E homodimer at neutral pH, has been hypothesized to function as an internal fusion peptide at low pH, but this has not yet been shown experimentally. It was predicted by examination of the X-ray crystal structure of the TBE virus E protein (F. A. Rey et al., Nature 375:291-298, 1995) that mutations at a specific residue within this loop (Leu 107) would not cause the native structure to be disrupted. We therefore introduced amino acid substitutions at this position and, using recombinant subviral particles, investigated the effects of these changes on fusion and related properties. Replacement of Leu with hydrophilic amino acids strongly impaired (Thr) or abolished (Asp) fusion activity, whereas a Phe mutant still retained a significant degree of fusion activity. Liposome coflotation experiments showed that the fusion-negative Asp mutant did not form a stable interaction with membranes at low pH, although it was still capable of undergoing the structural rearrangements required for fusion. These data support the hypothesis that the cd loop may be directly involved in interactions with target membranes during fusion.  相似文献   
102.
Deletions ranging in size from 4 to 21 amino acid residues were introduced into the capsid protein of the flavivirus tick-borne encephalitis (TBE) virus. These deletions incrementally affected a hydrophobic domain which is present at the center of all flavivirus capsid protein sequences and part of which may form an amphipathic alpha-helix. In the context of the full-length TBE genome, the deletions did not measurably affect protein expression and up to a deletion length of 16 amino acid residues, corresponding to almost 17% of mature protein C, viable virus was recovered. This virus was strongly attenuated but highly immunogenic in adult mice, revealing capsid protein C as a new and attractive target for the directed attenuation of flaviviruses. Apparently, the larger deletions interfered with the correct assembly of infectious virus particles, and this disturbance of virion assembly is likely to be the molecular basis of attenuation. However, all of the mutants carrying large deletions produced substantial amounts of subviral particles, which as judged from density gradient analyses were identical to recombinant subviral particles as obtained by the expression of the surface proteins prM and E alone. The structural and functional flexibility of protein C revealed in this study and its predicted largely alpha-helical conformation are reminiscent of capsid proteins of other enveloped viruses, such as alphaviruses (N-terminal domain of the capsid protein), retroviruses, and hepadnaviruses and suggest that all of these may belong to a common structural class, which is fundamentally distinct from the classical beta-barrel structures of many icosahedral viral capsids. The possibility of attenuating flaviviruses by disturbing virus assembly and favoring the production of noninfectious but highly immunogenic subviral particles opens up a promising new avenue for the development of live flavivirus vaccines.  相似文献   
103.
We found that glutathione transport across endo/sarcoplasmic reticulum membranes correlates with the abundance of ryanodine receptor type 1 (RyR1). The transport was the fastest in muscle terminal cisternae, fast in muscle microsomes and slow in liver, heart, and brain microsomes. Glutathione influx could be inhibited by RyR1 blockers and the inhibitory effect was counteracted by RyR1 agonists. The effect of blockers was specific to glutathione, as the transport of other small molecules was not hindered. Therefore, the glutathione transport activity seems to be associated with RyR1 in sarcoplasmic reticulum.  相似文献   
104.
A method is described for the determination of Fe2+ and Fe3+ after its reduction to Fe2+ on the basis of oxygen uptake rate as a function of Fe2+ concentration. By using substrate-specific Thiobacillus ferrooxidans in combination with the standard addition method a specific determination of iron(II, III) is possible with the determination limit of 3 mumol/L.  相似文献   
105.
106.
Dwarf lilyturf tuber is widely used in clinics to prevent cardiovascular diseases. DT-13, the saponin monomer 13 of dwarf lilyturf tuber, shows protective activities in anti-thrombosis, anti-inflammation, and cardioprotective. However, little is known about the cellular function of DT-13 in cardiovascular system. Vascular endothelial cells (EC) are important to maintain the integrity of the vasculature throughout entire body. Dysregulation of EC may lead to pathophysiological processes of numerous cardiovascular diseases. We thus tested the function of DT-13 in EC. In the present study, we are the first to report that DT-13 has anti-apoptosis activity on human umbilical vein endothelial cells (HUVEC), potentially through down regulation of cleaved caspase-3 and cleaved PARP expression. DT-13 also increased mitochondrial membrane potential. To explore the potential mechanism, we investigated the effect of DT-13 on Akt and MAPK pathways and found that DT-13 was involved in Akt signaling confirmed by using PI3 K/Akt inhibitor LY294002. Thus, DT-13 could improve survival of EC and therefore be a potential clinical use in the treatment of cardiovascular diseases.  相似文献   
107.
The role of CD44 in the progression of human melanoma has mostly been characterised by qualitative changes in expression of its individual variable exons. These exons however, may be expressed to form a number of molecules, the alternative splice variants of CD44, which may be structurally and functionally different. Using real-time PCR measurements with variable exon specific primers we have determined that all are expressed in human melanoma. To permit comparison between different tumours we identified a stable CD44 variable exon (CD44v) expression pattern, or CD44 ‘fingerprint’. This was found to remain unchanged in melanoma cell lines cultured in different matrix environments. To evaluate evolution of this fingerprint during tumour progression we established a scid mouse model, in which the pure expression pattern of metastatic primary tumours, circulating cells and metastases, non-metastatic primary tumours and lung colonies could be studied. Our analyses demonstrated, that although the melanoma CD44 fingerprint is qualitatively stable, quantitative changes are observed suggesting a possible role in tumour progression.  相似文献   
108.
109.
Short, “one-pot” syntheses of malondialdehyde adducts of deoxyguanosine, deoxyadenosine, and deoxycytidine are described. These syntheses proceed in improved yield and easier purification than previous syntheses and are well suited for the preparation of isotopically labeled nucleoside adducts for biomarker and metabolic studies.  相似文献   
110.
Plant cells have a rigid cell wall that constrains internal turgor pressure yet extends in a regulated and organized manner to allow the cell to acquire shape. The primary load-bearing macromolecule of a plant cell wall is cellulose, which forms crystalline microfibrils that are organized with respect to a cell''s function and shape requirements. A primary cell wall is deposited during expansion whereas secondary cell wall is synthesized post expansion during differentiation. A complex form of asymmetrical cellular differentiation occurs in Arabidopsis seed coat epidermal cells, where we have recently shown that two secondary cell wall processes occur that utilize different cellulose synthase (CESA) proteins. One process is to produce pectinaceous mucilage that expands upon hydration and the other is a radial wall thickening that reinforced the epidermal cell structure. Our data illustrate polarized specialization of CESA5 in facilitating mucilage attachment to the parent seed and CESA2, CESA5 and CESA9 in radial cell wall thickening and formation of the columella. Herein, we present a model for the complexity of cellulose biosynthesis in this highly differentiated cell type with further evidence supporting each cellulosic secondary cell wall process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号