首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1858篇
  免费   133篇
  国内免费   1篇
  2023年   9篇
  2022年   17篇
  2021年   34篇
  2020年   24篇
  2019年   27篇
  2018年   33篇
  2017年   36篇
  2016年   33篇
  2015年   58篇
  2014年   79篇
  2013年   99篇
  2012年   120篇
  2011年   117篇
  2010年   83篇
  2009年   67篇
  2008年   97篇
  2007年   94篇
  2006年   77篇
  2005年   77篇
  2004年   69篇
  2003年   56篇
  2002年   67篇
  2001年   53篇
  2000年   68篇
  1999年   54篇
  1998年   27篇
  1997年   16篇
  1996年   15篇
  1995年   9篇
  1994年   17篇
  1993年   18篇
  1992年   29篇
  1991年   33篇
  1990年   32篇
  1989年   32篇
  1988年   22篇
  1987年   17篇
  1986年   12篇
  1985年   12篇
  1984年   13篇
  1983年   8篇
  1982年   15篇
  1980年   7篇
  1979年   11篇
  1977年   11篇
  1976年   7篇
  1975年   7篇
  1974年   13篇
  1973年   9篇
  1971年   9篇
排序方式: 共有1992条查询结果,搜索用时 15 毫秒
191.
The discovery of unanticipated microbial diversity in remote, often hostile environments has led to a greater appreciation of the complexity and richness of the natural world. Yellowstone National Park (YNP) has long been a focus of work on taxa that inhabit extreme environments. Here we report the finding of microbial flora that inhabit an unexpected niche: the cavities of bone remnants from a bison carcass in Norris Geyser Basin in YNP. Although bleached white on the surface, the bone cavities are bright green due to the presence of Stichococcus-like trebouxiophyte green algae. The cavities also harbour different fungi and bacteria. Stichococcus species are common lichen photobionts and the Thelebolales fungi present in the bone cavities have previously been found in association with animal remains. Scanning electron microscope analysis suggests the fungi and algae do not form lichen-like associations in the bone. Rather these taxa and the bacteria appear to be opportunists that have colonized an isolated oasis that provides nutrients and protection from desiccation and UV radiation.  相似文献   
192.
D-Saccharic acid 1,4-lactone (DSL) is a derivative of D-glucaric acid. It is a beta-glucuronidase inhibitor and possesses anticarcinogenic, detoxifying, and antioxidant properties. In the present study, the protective effects of DSL were investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity and cell death in vitro using murine hepatocytes. Exposure of TBHP caused a reduction in cell viability, enhanced the membrane leakage, and disturbed the intracellular antioxidant machineries in murine hepatocytes. Investigating the signaling mechanism of TBHP-induced cellular pathophysiology and protective action of DSL, we found that TBHP exposure disrupted mitochondrial membrane potential, facilitated cytochrome c release in the cytosol, and led to apoptotic cell death via mitochondria-dependent pathways. DSL counteracted these changes and maintained normalcy in hepatocytes. Combining, results suggest that DSL possesses the ability to ameliorate TBHP-induced oxidative insult, cytotoxicity, and apoptotic cell death probably due to its antioxidant activity and functioning via mitochondria-dependent pathways.  相似文献   
193.
A polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) with an inner arrangement consisting of eight equidistantly spaced rectangular strips mounted radially on a circular disk to provide additional surface area for fungal attachment was employed for production of cellulase by Chaetomium crispatum and xylanase by Gliocladium viride. The design allowed comparison of production between CCFs with hydrophobic surface (PMMA-CCF), hydrophilic glass surface (GS-CCF) and 500-ml Erlenmeyer flask (EF). Compared with the EF, endo-β-1,4-glucanase and FPase (filter paper degradation) activities increased from 0.044 to 0.156 and from 0.008 to 0.021 IU/ml, respectively, in the PMMA-CCF, while growth of C. crispatum was higher by at most 1.38-fold compared with the other vessels. Xylanase production in the EF was at most 5.08-fold higher and growth of G. viride was at most 1.52-fold higher compared with the other vessels. Temporal pattern of biofilm development based on two-channel fluorescence detection of extracellular polymeric substances (EPSs) and whole cells in a confocal laser scanning microscope demonstrated increase by 100% in biovolume, 25% in thickness and 62.5% both in substratum coverage and total spreading of C. crispatum biofilm in PMMA-CCF over 6 days. Biovolume of G. viride biofilm in GS-CCF increased by 150% over 4 days while that in PMMA-CCF enhanced by 200% over 2 days. Biofilm thickness in PMMA-CCF was 44% higher compared with GS-CCF and increased by 175% over 2 days. Substratum coverage was 38% higher in GS-CCF compared with PMMA-CCF. Thus, reactor surface area and property, shear forces and biofilm formation influenced enzyme production.  相似文献   
194.
Prion proteins misfold and aggregate into multiple infectious strain variants that possess unique abilities to overcome prion species barriers, yet the structural basis for the species-specific infectivities of prion strains is poorly understood. Therefore, we have investigated the site-specific structural properties of a promiscuous chimeric form of the yeast prion Sup35 from Saccharomyces cerevisiae and Candida albicans. The Sup35 chimera forms two strain variants, each of which selectively infect one species but not the other. Importantly, the N-terminal and middle domains of the Sup35 chimera (collectively referred to as Sup35NM) contain two prion recognition elements (one from each species) that regulate the nucleation of each strain. Mutations in either prion recognition element significantly bias nucleation of one strain conformation relative to the other. Here we have investigated the folding of each prion recognition element for the serine-to-arginine mutant at residue 17 of the Sup35NM chimera known to promote nucleation of C. albicans strain conformation. Using cysteine-specific labeling analysis, we find that residues in the C. albicans prion recognition element are solvent-shielded, while those outside the recognition sequence (including most of those in the S. cerevisiae recognition element) are solvent-exposed. Moreover, we find that proline mutations in the C. albicans recognition sequence disrupt the prion templating activity of this strain conformation. Our structural findings reveal that differential folding of complementary and non-complementary prion recognition elements within the prion amyloid core of the Sup35NM chimera is the structural basis for its species-specific templating activity.Key words: Sup35, amyloid, fibril, PrP, transmission barrier, species barrier  相似文献   
195.
The activities of nine ubiquitous promoters (ROSA26, CAG, CMV, CMVd1, UbC, EF1α, PGK, chicken β-actin and MC1) have been quantified and compared in mouse embryonic stem cells. To avoid the high variation in transgene expression which results from uncontrolled copy number and chromosomal position effects when using random insertion based transgenic approaches, we have adopted a PhiC31 integrase mediated cassette exchange method for the efficient insertion of transgenes at single copy within a defined and well characterized chromosomal position, ROSA26. This has enabled the direct comparison of constructs from within the same genomic context and allows a systematic and quantitative assessment of the strengths of the promoters in comparison with the endogenous ROSA26 promoter. The behavior of these exogenous promoters, when integrated at ROSA26 in both sense and antisense orientations, reveals a large variation in their levels of activity. In addition, a subset of promoters, EF1α, UbC and CAG, show an increased activity in the sense orientation as a consequence of integration. Transient transfection experiments confirmed these observations to reflect integration dependent effects and also revealed significant differences in the behaviour of these promoters when delivered transiently or stably. As well as providing an important reference which will facilitate the choice of an appropriate promoter to achieve the desired level of expression for a specific research question, this study also demonstrates the suitability of the cassette exchange methodology for the robust and reliable expression of multiple variant transgenes in ES cells.  相似文献   
196.
197.
The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) “toxicity pathways” (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.  相似文献   
198.

Background

Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells.Gold nanoparticles (GNPs) are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography). The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.

Methodology/Principal Findings

The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent) on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor), all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.

Conclusion

Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1) targeting agent to nanoparticle ratio 2) availability of reactive surface area on the nanoparticle 3) ability of the nanoconjugate to bind the target and 4) hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle conjugates.  相似文献   
199.
200.
Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号