首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2149篇
  免费   231篇
  国内免费   1篇
  2381篇
  2023年   12篇
  2022年   21篇
  2021年   35篇
  2020年   15篇
  2019年   31篇
  2018年   32篇
  2017年   24篇
  2016年   55篇
  2015年   91篇
  2014年   76篇
  2013年   96篇
  2012年   144篇
  2011年   145篇
  2010年   96篇
  2009年   79篇
  2008年   116篇
  2007年   103篇
  2006年   125篇
  2005年   113篇
  2004年   94篇
  2003年   86篇
  2002年   103篇
  2001年   29篇
  2000年   32篇
  1999年   42篇
  1998年   29篇
  1997年   18篇
  1996年   15篇
  1995年   23篇
  1994年   15篇
  1993年   16篇
  1992年   25篇
  1991年   15篇
  1990年   21篇
  1989年   22篇
  1988年   21篇
  1987年   16篇
  1986年   22篇
  1985年   18篇
  1984年   22篇
  1983年   20篇
  1982年   25篇
  1981年   13篇
  1980年   15篇
  1978年   14篇
  1977年   16篇
  1976年   15篇
  1975年   12篇
  1974年   16篇
  1973年   19篇
排序方式: 共有2381条查询结果,搜索用时 15 毫秒
61.
Background: Catalytic RNAs, or ribozymes, possessing both a genotype and a phenotype, are ideal molecules for evolution experiments in vitro. A large, heterogeneous pool of RNAs can be subjected to multiple rounds of selection, amplification and mutation, leading to the development of variants that have some desired phenotype. Such experiments allow the investigator to correlate specific genetic changes with quantifiable alterations of the catalytic properties of the RNA. In addition, patterns of evolutionary change can be discerned through a detailed examination of the genotypic composition of the evolving RNA population. Results: Beginning with a pool of 10(13) variants of the Tetrahymena ribozyme, we carried out in vitro evolution experiments that led to the generation of ribozymes with the ability to cleave an RNA substrate in the presence of Ca2+ ions, an activity that does not exist for the wild-type molecule. Over the course of 12 generations, a seven-error variant emerged that has substantial Ca(2+)-dependent RNA-cleavage activity. Advantageous mutations increased in frequency in the population according to three distinct dynamics--logarithmic, linear and transient. Through a comparative analysis of 31 individual variants, we infer how certain mutations influence the catalytic properties of the ribozyme. Conclusions: In vitro evolution experiments make it possible to elucidate important aspects of both evolutionary biology and structural biochemistry on a reasonable short time scale.  相似文献   
62.
Inhibition of the pre-steady-state burst of nucleotide incorporation by a single incorrect nucleotide (nucleotide discrimination) was measured with the Klenow fragment of DNA polymerase I [KF(exo+)]. For the eight mispairs studied on three DNA sequences, only low levels of discrimination ranging from none to 23-fold were found. The kinetics of dNTP incorporation into the 9/20-mer at low nucleotide concentrations was also determined. A limit of greater than or equal to 250 s-1 was placed on the nucleotide off-rate from the KF(exo+)-9/20-dTTP complex in accord with nucleotide binding being at equilibrium in the overall kinetic sequence. The influence of the relatively short length of the 9/20-mer on the mechanism of DNA replication fidelity was determined by remeasuring important kinetic parameters on a 30/M13-mer with high homology to the 9/20-mer. Pre-steady-state data on the nucleotide turnover rates, the dATP(alpha S) elemental effect, and the burst of dAMP misincorporation into the 30/M13-mer demonstrated that the kinetics were not affected by the length of the DNA primer/template. The effects on fidelity of two site-specific mutations, KF(polA5) and KF(exo-), were also examined. KF(polA5) showed an increased rate of DNA dissociation and a decreased rate of polymerization resulting in less processive DNA synthesis. Nevertheless, with at least one misincorporation event, that of dAMP into the 9/20-mer, KF(polA5) displays an increased replication fidelity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
63.
The water-insoluble procedures in US Pharmacopeia (USP) General Chapter Residual Solvents <467>, which are based on European Pharmacopoeia procedures, were optimized and modified before their inclusion in the chapter to improve their scope, performance, and ruggedness. The optimized procedures use a static headspace introduction system with a gas chromatograph equipped with a flame ionization detector. This article describes some of the key changes made to the USP published procedures, including use of dimethyl sulfoxide (DMSO) or dimethylformamide (DMF) as the solvent, addition of 5 mL of water and 1 mL of sample (dissolved in DMSO or DMF) to the headspace vial, use of a 3:1 GC split ratio, and use of new matrix-matched system suitability solutions. These procedures were verified with two different active pharmaceutical ingredients—hydroxyzine pamoate and prednisone. In the investigation, the more polar material (hydroxyzine pamoate) showed greater recoveries for the optimized procedures when prepared in DMSO. The less polar material (prednisone) typically had greater recoveries in DMF for the optimized procedures. During experimentation, insights into sample preparation, additional types of headspace instrumentation, solvent purity, and other parameters were also gained.  相似文献   
64.
The endothelium of the cardiac valves is unique compared the rest of the vasculature in its ability to undergo an endothelial-to-mesenchymal transformation (EMT) in vitro in response to transforming growth factor-β (TGF-β). EMT is a critical event during embryonic valve development, and both VEGF-A and Notch1 have been shown to function in this process. Here we investigate the effects of VEGF-A and Notch1 on EMT in clonal endothelial cell (EC) populations isolated from adult aortic valve leaflets. VEGF-A inhibited TGF-β-induced EMT. Endothelial growth, however, was not affected by VEGF-A or TGF-β. A positive role for Notch1 was revealed in three experiments: (1) TGF-β induced Notch1 mRNA in valve ECs, (2) a γ-secretase inhibitor of Notch1 signaling blocked EMT, and (3) overexpression of a ligand-independent form of Notch1 induced EMT. These results demonstrate, for the first time, that VEGF-A and Notch1 play opposing roles in regulating EMT in post-natal valve endothelium.  相似文献   
65.
66.
Emulsan has been reported as an emulsion stabilizing amphipathic lipoheteropolysaccharide secreted by the oil-degrading bacterium Acinetobacter venetianus RAG-1. Previously, emulsan was regarded as a single polymer. As a result of developing a new purification process, we have discovered that emulsan is a complex of approximately 80% (w/w) lipopolysaccharide (LPS) and 20% (w/w) high molecular weight exopolysaccharide (EPS). The EPS was purified to 98% (w/w) using tangential flow filtration, Triton X-114 phase extraction, ammonium sulfate precipitation, and hydrophobic interaction chromatography. Several previously reported physical properties of emulsan can be attributed to the LPS fraction, such as charge, fatty acid profile, and solution behavior, while the EPS is responsible for the emulsion stabilization activity. The EPS is believed to be cationic in nature, thus providing an electrostatic binding mechanism for the formation of the emulsan complex.  相似文献   
67.
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6   总被引:31,自引:0,他引:31  
The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.  相似文献   
68.
JARID1B (also known as KDM5B or PLU1) is a member of the JARID1 family of histone lysine demethylases responsible for the demethylation of trimethylated lysine 27 in histone H3 (H3K4me3), a mark for actively transcribed genes. JARID1B is overexpressed in several cancers, including breast cancer, prostate cancer, and lung cancer. In addition, JARID1B is required for mammary tumor formation in syngeneic or xenograft mouse models. JARID1B-expressing melanoma cells are associated with increased self-renewal character. Therefore, JARID1B represents an attractive target for cancer therapy. Here we characterized JARID1B using a homogeneous luminescence-based demethylase assay. We then conducted a high throughput screen of over 15,000 small molecules to identify inhibitors of JARID1B. From this screen, we identified several known JmjC histone demethylase inhibitors, including 2,4-pyridinedicarboxylic acid and catechols. More importantly, we identified several novel inhibitors, including 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT), which inhibits JARID1B with an IC50 of about 3 μm in vitro. Consistent with this, PBIT treatment inhibited removal of H3K4me3 by JARID1B in cells. Furthermore, this compound inhibited proliferation of cells expressing higher levels of JARID1B. These results suggest that this novel small molecule inhibitor is a lead compound that can be further optimized for cancer therapy.  相似文献   
69.
Cdc45 is required for initiation of DNA replication and fork progression, but its function in these processes remains unknown. We show that targeting Cdc45 to specific chromosomal sites in mammalian cells results in large-scale chromatin decondensation that strongly correlates with histone H1 phosphorylation. Cdk2 is recruited to sites of Cdc45 decondensation, and Cdk2 inhibitors reduce the level of decondensation. Targeting wild-type Cdk2, but not kinase-defective Cdk2, to chromatin is also effective at inducing decondensation involving phospho-H1. Cdc45, Cdk2, Cyclin A, and phospho-H1 associate with chromatin during S-phase, and Cdc45, Cdk2, and an active H1 kinase physically interact. Replicating DNA and phospho-H1 foci colocalize in vivo, and S-phase progression and H1 phosphorylation are directly related and Cdk2 dependent. Because Cdk2 colocalizes with replication foci and H1 regulates higher-order chromatin, we suggest a model in which Cdc45 recruits Cdk2 to replication foci, resulting in H1 phosphorylation, chromatin decondensation, and facilitation of fork progression.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号