首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58318篇
  免费   4927篇
  国内免费   49篇
  63294篇
  2023年   212篇
  2022年   604篇
  2021年   1037篇
  2020年   571篇
  2019年   771篇
  2018年   1164篇
  2017年   913篇
  2016年   1619篇
  2015年   2667篇
  2014年   2946篇
  2013年   3458篇
  2012年   4481篇
  2011年   4290篇
  2010年   2727篇
  2009年   2392篇
  2008年   3450篇
  2007年   3201篇
  2006年   2956篇
  2005年   2662篇
  2004年   2595篇
  2003年   2309篇
  2002年   1996篇
  2001年   1674篇
  2000年   1567篇
  1999年   1257篇
  1998年   555篇
  1997年   486篇
  1996年   414篇
  1995年   416篇
  1994年   320篇
  1993年   313篇
  1992年   664篇
  1991年   530篇
  1990年   495篇
  1989年   501篇
  1988年   426篇
  1987年   405篇
  1986年   340篇
  1985年   347篇
  1984年   292篇
  1983年   244篇
  1982年   214篇
  1981年   174篇
  1980年   175篇
  1979年   230篇
  1978年   211篇
  1977年   194篇
  1976年   185篇
  1974年   212篇
  1973年   170篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Disease outbreaks devastate Pyropia aquaculture farms every year. The three most common and serious diseases are Olpidiopsis‐blight and red‐rot disease caused by oomycete pathogens and green‐spot disease caused by the PyroV1 virus. We hypothesized that a basic genetic profile of molecular defenses will be revealed by comparing and analyzing the genetic response of Pyropia tenera against the above three pathogens. RNAs isolated from infected thalli were hybridized onto an oligochip containing 15,115 primers designed from P. tenera expressed sequence tags (EST)s. Microarray profiles of the three diseases were compared and interpreted together with histochemical observation. Massive amounts of reactive oxygen species accumulated in P. tenera cells exposed to oomycete pathogens. Heat shock genes and serine proteases were the most highly up‐regulated genes in all infection experiments. Genes involved in RNA metabolism, ribosomal proteins and antioxidant metabolism were also highly up‐regulated. Genetic profiles of P. tenera in response to pathogens were most similar between the two biotrophic pathogens, Olpidiopsis pyropiae and PyroV1 virus. A group of plant resistance genes were specifically regulated against each pathogen. Our results suggested that disease response in P. tenera consists of a general constitutive defense and a genetic toolkit against specific pathogens.  相似文献   
993.
994.
995.
Human sparganosis is a zoonotic disease caused by infection with larval forms (procercoid/plerocercoid) of Spirometra spp. The purpose of this study was to identify Spirometra spp. of infected snakes using a multiplex PCR assay and phylogenetic analysis of mitochondrial DNA sequence data from the spargana of terrestrial snakes obtained from Korea and China. A total of 283 snakes were obtained that included 4 species of Colubridae comprising Rhabdophis tigrinus tigrinus (n=150), Dinodon rufozonatum rufozonatum (n=64), Elaphe davidi (n=2), and Elaphe schrenkii (n=7), and 1 species of Viperidae, Agkistrodon saxatilis (n=60). The snakes were collected from the provinces of Chungbuk, Chungnam, and Gyeongbuk in Korea (n=161), and from China (n=122). The overall infection rate with spargana was 83% (235/283). The highest was recorded for D. rufozonatum rufozonatum (100%), followed by A. saxatilis (85%) and R. tigrinus tigrinus (80%), with a negative result for E. davidi (0%) and E. schrenkii (0%). The sequence identities between the spargana from snakes (n=50) and Spirometra erinaceieuropaei (KJ599680) or S. decipiens (KJ599679) control specimens were 90.8% and 99.2%, respectively. Pairwise genetic distances between spargana (n=50) and S. decipiens ranged from 0.0080 to 0.0107, while those between spargana and S. erinaceieuropaei ranged from 0.1070 to 0.1096. In this study, all of the 904 spargana analyzed were identified as S. decipiens either by a multiplex PCR assay (n=854) or mitochondrial cox1 sequence analysis (n=50).  相似文献   
996.
We describe a novel strategy to produce vaccine antigens using a plant cell‐suspension culture system in lieu of the conventional bacterial or animal cell‐culture systems. We generated transgenic cell‐suspension cultures from Nicotiana benthamiana leaves carrying wild‐type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot‐and‐mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co‐expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large‐scale production of immunopeptide vaccines in a cost‐effective manner using a plant cell‐suspension culture system.  相似文献   
997.
Chromosomal inversions can provide windows onto the cytogenetic, molecular, evolutionary and demographic histories of a species. Here we investigate a paracentric 1.17‐Mb inversion on chromosome 4 of Arabidopsis thaliana with nucleotide precision of its borders. The inversion is created by Vandal transposon activity, splitting an F‐box and relocating a pericentric heterochromatin segment in juxtaposition with euchromatin without affecting the epigenetic landscape. Examination of the RegMap panel and the 1001 Arabidopsis genomes revealed more than 170 inversion accessions in Europe and North America. The SNP patterns revealed historical recombinations from which we infer diverse haplotype patterns, ancient introgression events and phylogenetic relationships. We find a robust association between the inversion and fecundity under drought. We also find linkage disequilibrium between the inverted region and the early flowering Col‐FRIGIDA allele. Finally, SNP analysis elucidates the origin of the inversion to South‐Eastern Europe approximately 5000 years ago and the FRI‐Col allele to North‐West Europe, and reveals the spreading of a single haplotype to North America during the 17th to 19th century. The ‘American haplotype’ was identified from several European localities, potentially due to return migration.  相似文献   
998.

Background

Radiographic evaluation for patients with scoliosis using Cobb method is the current gold standard, but radiography has radiation hazards. Several groups have recently demonstrated the feasibility of using 3D ultrasound for the evaluation of scoliosis. Ultrasound imaging is radiation-free, comparatively more accessible, and inexpensive. However, a reliable and valid 3D ultrasound system ready for clinical scoliosis assessment has not yet been reported. Scolioscan is a newly developed system targeted for scoliosis assessment in clinics by using coronal images of spine generated by a 3D ultrasound volume projection imaging method. The aim of this study is to test the reliability of spine deformity measurement of Scolioscan and its validity compared to the gold standard Cobb angle measurements from radiography in adolescent idiopathic scoliosis (AIS) patients.

Methods

Prospective study divided into two stages: 1) Investigation of intra- and inter- reliability between two operators for acquiring images using Scolioscan and among three raters for measuring spinal curves from those images; 2) Correlation between the Cobb angle obtained from radiography by a medical doctor and the spine curve angle obtained using Scolioscan (Scolioscan angle). The raters for ultrasound images and the doctors for evaluating radiographic images were mutually blinded. The two stages of tests involved 20 (80 % females, total of 26 angles, age of 16.4?±?2.7 years, and Cobb angle of 27.6?±?11.8°) and 49 (69 % female, 73 angles, 15.8?±?2.7 years and 24.8?±?9.7°) AIS patients, respectively. Intra-class correlation coefficients (ICC) and Bland-Altman plots and root-mean-square differences (RMS) were employed to determine correlations, which interpreted based on defined criteria.

Results

We demonstrated a very good intra-rater and intra-operator reliability for Scolioscan angle measurement with ICC larger than 0.94 and 0.88, respectively. Very good inter-rater and inter-operator reliability was also demonstrated, with both ICC larger than 0.87. For the thoracic deformity measurement, the RMS were 2.5 and 3.3° in the intra- and inter-operator tests, and 1.5 and 3.6° in the intra- and inter-rater tests, respectively. The RMS differences were 3.1, 3.1, 1.6, 3.7° in the intra- and inter-operator and intra- and inter-rater tests, respectively, for the lumbar angle measurement. Moderate to strong correlations (R2?>?0.72) were observed between the Scolioscan angles and Cobb angles for both the thoracic and lumbar regions. It was noted that the Scolioscan angle slightly underestimated the spinal deformity in comparison with Cobb angle, and an overall regression equation y?=?1.1797x (R2?=?0.76) could be used to translate the Scolioscan angle (x) to Cobb angle (y) for this group of patients. The RMS difference between Scolioscan angle and Cobb angle was 4.7 and 6.2°, with and without the correlation using the overall regression equation.

Conclusions

We showed that Scolioscan is reliable for measuring coronal deformity for patients with AIS and appears promising in screening large numbers of patients, for progress monitoring, and evaluation of treatment outcomes. Due to it being radiation-free and relatively low-cost, Scolioscan has potential to be widely implemented and may contribute to reducing radiation dose during serial monitoring.
  相似文献   
999.
Recognition of histone post-translational modifications is pivotal for directing chromatin-modifying enzymes to specific genomic regions and regulating their activities. Emerging evidence suggests that other structural features of nucleosomes also contribute to precise targeting of downstream chromatin complexes, such as linker DNA, the histone globular domain, and nucleosome spacing. However, how chromatin complexes coordinate individual interactions to achieve high affinity and specificity remains unclear. The Rpd3S histone deacetylase utilizes the chromodomain-containing Eaf3 subunit and the PHD domain-containing Rco1 subunit to recognize nucleosomes that are methylated at lysine 36 of histone H3 (H3K36me). We showed previously that the binding of Eaf3 to H3K36me can be allosterically activated by Rco1. To investigate how this chromatin recognition module is regulated in the context of the Rpd3S complex, we first determined the subunit interaction network of Rpd3S. Interestingly, we found that Rpd3S contains two copies of the essential subunit Rco1, and both copies of Rco1 are required for full functionality of Rpd3S. Our functional dissection of Rco1 revealed that besides its known chromatin-recognition interfaces, other regions of Rco1 are also critical for Rpd3S to recognize its nucleosomal substrates and functionin vivo. This unexpected result uncovered an important and understudied aspect of chromatin recognition. It suggests that precisely reading modified chromatin may not only need the combined actions of reader domains but also require an internal signaling circuit that coordinates the individual actions in a productive way.  相似文献   
1000.
Summary Stable transformants were obtained after microprojectile particle bombardment of tomato cell suspensions (Lycopersicon esculentum cv VFNT Cherry and L. pennellii). The suspensions were bombarded with tungsten particles coated with either plasmid (6.3 kb) or yeast artificial chromosome (YAC) (80 kb) DNA containing the ß-glucuronidase (GUS) and neomycin phosphotransferase II (nptII) genes. The YAC DNA contained an insert of approximately 50 kb of DNA from VFNT Cherry. L. pennellii suspensions were more amenable to transformation than VFNT Cherry; more kanamycin-resistant calli were recovered from L. pennelli after bombardment with plasmid DNA, and only L. pennellii cells produced transformants after bombardment with YAC DNA. DNA gel blot analysis confirmed the presence of the nptll and GUS genes. This analysis also confirmed the integration of YAC DNA into the genome of the kanamycin-resistant calli and suggested that the level of intactness of the integrated YAC DNA was fairly high in four of the five transformants examined. Microprojectile bombardment of regenerable cultures with YACs may ultimately aid in map-based cloning of agriculturally-important genes.Abbreviations YAC yeast artificial chromosome - MS Murashige and Skoog - 2,4-D 2,4-dichlorophenoxy-acetic acid - IAA indole-3-acetic acid - GUS ß-glucuronidase - nptII neomycin phosphotransferase II  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号