首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3822篇
  免费   432篇
  2021年   59篇
  2020年   24篇
  2019年   37篇
  2018年   43篇
  2017年   30篇
  2016年   76篇
  2015年   125篇
  2014年   114篇
  2013年   148篇
  2012年   227篇
  2011年   204篇
  2010年   135篇
  2009年   114篇
  2008年   176篇
  2007年   170篇
  2006年   184篇
  2005年   173篇
  2004年   158篇
  2003年   151篇
  2002年   157篇
  2001年   73篇
  2000年   87篇
  1999年   78篇
  1998年   49篇
  1997年   36篇
  1996年   37篇
  1995年   41篇
  1994年   35篇
  1993年   42篇
  1992年   61篇
  1991年   58篇
  1990年   53篇
  1989年   64篇
  1988年   48篇
  1987年   59篇
  1986年   66篇
  1985年   62篇
  1984年   54篇
  1983年   45篇
  1982年   45篇
  1981年   28篇
  1980年   36篇
  1979年   33篇
  1978年   32篇
  1977年   38篇
  1976年   39篇
  1975年   51篇
  1974年   40篇
  1973年   33篇
  1972年   25篇
排序方式: 共有4254条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
The chytridiomycete fungus Batrachochytrium dendrobatidis (Bd) colonizes mouthparts of amphibian larvae and superficial epidermis of post-metamorphic amphibians, causing the disease chytridiomycosis. Fungal growth within host cells has been documented by light and transmission electron microscopy; however, entry of the fungus into host cells has not. Our objective was to document how Bd enters host cells in the wood frog Lithobates sylvaticus, a species at high mortality risk for chytridiomycosis, and the bullfrog L. catesbeianus, a species at low mortality risk for chytridiomycosis. We inoculated frogs and documented infection with transmission electron microscopy. Zoospores encysted on the skin surface and produced morphologically similar germination tubes in both host species that penetrated host cell membranes and enabled transfer of zoospore contents into host cells. Documenting fungal and epidermal ultrastructure during host invasion furthers our understanding of Bd development and the pathogenesis of chytridiomycosis.  相似文献   
995.
Chlamydia trachomatis serovars D-K are obligate intracellular bacteria that have tropism for the columnar epithelial cells of the genital tract. Chlamydia trachomatis infection has been reported to induce modifications in immune cell ligand expression on epithelial host cells. In this study, we used an in vitro infection model that resulted in a partial infection of C. trachomatis-exposed primary-like immortalized endocervical epithelial cells (A2EN). Using this model, we demonstrated that expression of the natural killer (NK) cell activating ligand, MHC class I-related protein A (MICA), was upregulated on C. trachomatis-infected, but not on noninfected bystander cells. MICA upregulation was concomitant with MHC class I downregulation and impacted the susceptibility of C. trachomatis-infected cells to NK cell activity. The specificity of MICA upregulation was reflected by a higher cytolytic activity of an NK cell line (NK92MI) against C. trachomatis-infected cells compared with uninfected control cells. Significantly, data also indicated that NK cells exerted a partial, but incomplete sterilizing effect on C. trachomatis as shown by the reduction in recoverable inclusion forming units (IFU) when cocultured with C. trachomatis-infected cells. Taken together, our data suggest that NK cells may play a significant role in the ability of the host to counter C. trachomatis infection.  相似文献   
996.
Amyloidosis resulting from the deposition of aggregated protein has been linked to many debilitating degenerative diseases which include most notably Alzheimer's and Parkinson's. The tendency for a protein to alternatively form highly ordered amyloid fibrils is dependent on many biological factors. Mutations, temperature, concentration, translational motion and pH play a pivotal role in inducing fibril aggregate assembly in vitro. The key feature appears to be the need to destabilize the native state structure as a required first step. In this paper we report on the detailed conversion of the death domain of the human Fas-associated death domain, an all α-helical protein with a Greek-key topology, into an all β-sheet amyloid fibril, using a comprehensive range of spectroscopic techniques that provide insight into this process. This transition from α-helical to β-sheet seems to require destabilization but not complete loss of the secondary structure to explore alternative conformations. This is a fascinating transition that supports the hypothesis that all proteins have the innate ability to form a fibril-like structure. Thus, the primary structure can encode two alternative three-dimensional structures: the native, functional state and the β-amyloid state. The Fas-associated death domain does not appear to naturally form amyloid fibrils in vivo. Our results clearly indicate that proteins evolved to avoid amyloid fibril formation because we find that the conditions required for formation in our model system are very specific and far from physiological.  相似文献   
997.
Dollo’s law, that complex characters are not regained in evolution, is a pattern applied to many systems. Recent work has evaluated unidirectional evolution in a number of contexts, and several violations of this law have been documented. These methods have also been criticized for potentially overestimating reversals. We test the hypothesis that the ancestral reproductive mode of oviparity can be regained in vipers, in opposition to Dollo’s law. We use model comparison and ancestral character state reconstruction methods that address recent criticisms, and find evidence both supporting and refuting Dollo’s predictions from different analyses. We discuss our results in the context of unidirectional evolution and review factors required for strong inference of violations of Dollo’s law.  相似文献   
998.
999.
1000.
Siah proteins are ubiquitin-protein isopeptide ligases (E3) that have been implicated in a variety of cellular actions, including promotion of apoptotic death. Here, we show that Siah1 is a binding partner for POSH (plenty of SH3s), a scaffold component of the apoptotic JNK pathway, and that Siah contributes to death of neurons and other cell types by activating the JNK pathway. Such proapoptotic activity requires the E3 ligase activity of Siah1. Moreover, apoptotic stimuli markedly elevate cellular Siah1 levels by a mechanism reliant on Siah1 protein stabilization. This stabilization requires JNK pathway activation and interaction with POSH and is enhanced by phosphorylation of SIAH1 at tyrosines 100 and 126. Depletion of intracellular Siah proteins via small interference RNA partially protects cells from death evoked by apoptotic stimuli such as trophic factor deprivation and DNA damage. These findings thus reveal a "loop" mechanism in which the JNK pathway promotes SIAH1 stabilization and in which SIAH1 in turn activates the JNK pathway and, ultimately, contributes to cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号