首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3255篇
  免费   353篇
  2021年   53篇
  2020年   24篇
  2019年   44篇
  2018年   47篇
  2017年   40篇
  2016年   75篇
  2015年   124篇
  2014年   108篇
  2013年   139篇
  2012年   203篇
  2011年   200篇
  2010年   126篇
  2009年   114篇
  2008年   155篇
  2007年   154篇
  2006年   175篇
  2005年   168篇
  2004年   148篇
  2003年   121篇
  2002年   138篇
  2001年   52篇
  2000年   69篇
  1999年   71篇
  1998年   33篇
  1997年   32篇
  1996年   22篇
  1995年   32篇
  1994年   24篇
  1993年   30篇
  1992年   47篇
  1991年   32篇
  1990年   36篇
  1989年   37篇
  1988年   33篇
  1987年   30篇
  1986年   43篇
  1985年   38篇
  1984年   36篇
  1983年   42篇
  1982年   33篇
  1980年   23篇
  1979年   23篇
  1978年   28篇
  1977年   38篇
  1976年   34篇
  1975年   30篇
  1974年   33篇
  1973年   28篇
  1972年   24篇
  1971年   25篇
排序方式: 共有3608条查询结果,搜索用时 15 毫秒
991.
Structure-activity relationship studies performed around 3-fluoro-5-(5-pyridin-2-yl-2H-tetrazol-2-yl)benzonitrile for the purpose of developing novel mGlu5 receptor antagonists are described. Synthesis of a series of four-ring tetrazoles led to the discovery of 3-[3-fluoro-5-(5-pyridin-2-yl-2H-tetrazol-2-yl)phenyl]-4-methylpyridine, a highly potent, brain penetrant, azole-based mGlu5 receptor antagonist.  相似文献   
992.
Ectopically expressed Cdc6 is translocated from the nucleus during S phase in a cyclin A-Cdk2-dependent process, suggesting that reinitiation of DNA replication is prevented by removal of phosphorylated Cdc6 from chromatin after origin firing. However, whether endogenous Cdc6 translocates during S phase remains controversial. To resolve the questions regarding regulation of endogenous Cdc6, we cloned the cDNA encoding the Chinese hamster Cdc6 homolog and specifically focused on analyzing the localizations and chromatin affinities of endogenous and exogenous proteins during S phase and following overexpression of cyclin A. In agreement with other reports, ectopically expressed Cdc6 translocates from the nucleus during S phase and in response to overexpressed cyclin A. In contrast, using a combination of biochemical and immunohistochemical assays, we show convincingly that endogenous Cdc6 remains nuclear and chromatin bound throughout the entire S period, while Mcm5 loses chromatin affinity during S phase. Overexpression of cyclin A is unable to alter the nuclear localization of Cdc6. Furthermore, using a phosphospecific antibody we show that phosphoserine-54 Cdc6 maintains a high affinity for chromatin during the S period. Considering recent in vitro studies, these data are consistent with a proposed model in which Cdc6 is serine-54 phosphorylated during S phase and functions as a chromatin-bound signal that prevents reformation of prereplication complexes.  相似文献   
993.
NKT cells represent a unique subset of immunoregulatory T cells that recognize glycolipid Ags presented by the MHC class I-like molecule CD1d. Because of their immunoregulatory properties, NKT cells are attractive targets for the development of immunotherapies. The prototypical NKT cell ligand alpha-galactosylceramide (alpha-GalCer), originally isolated from a marine sponge, has potent immunomodulatory activities in mice, demonstrating therapeutic efficacy against metastatic tumors, infections, and autoimmune diseases, but also has a number of adverse side effects. In vivo administration of alpha-GalCer to mice results in the rapid activation of NKT cells, which is characterized by cytokine secretion, surface receptor down-regulation, expansion, and secondary activation of a variety of innate and adaptive immune system cells. In this study, we have evaluated the in vivo immune response of mice to a set of structural analogues of alpha-GalCer. Our results show that, contrary to current thinking, beta-anomeric GalCer can induce CD1d-dependent biological activities in mice, albeit at lower potency than alpha-anomeric GalCer. In addition, we show that the response of NKT cells to distinct GalCer differs not only quantitatively, but also qualitatively. These findings indicate that NKT cells can fine-tune their immune responses to distinct glycolipid Ags in vivo, a property that may be exploited for the development of effective and safe NKT cell-based immunotherapies.  相似文献   
994.
There are conflicting reports on the requirements for the IL-27-WSX-1 pathway in the development of Th type 1 responses and resistance to intracellular pathogens; although early IFN-gamma production and resistance to Leishmania major are impaired in the absence of WSX-1 signaling, WSX-1(-/-) mice generate robust IFN-gamma responses and control infection with other intracellular protozoan pathogens. In this report, we resolve these conflicting observations and demonstrate that, in the absence of IL-4, WSX-1 is not required for early IFN-gamma production and control of L. major. Thus, the requirement for WSX-1 signaling in Th type 1 cell differentiation is restricted to conditions in which IL-4 is produced.  相似文献   
995.
Olfactory marker protein (OMP) participates in the olfactory signal transduction pathway. This is evident from the behavioral and electrophysiological deficits of OMP-null mice, which can be reversed by intranasal infection of olfactory sensory neurons with an OMP-expressing adenovirus. Bex, brain expressed X-linked protein, has been identified as a protein that interacts with OMP. We have now further characterized the interaction of OMP and Bex1/2 by in vitro binding assays and by immuno-coprecipitation experiments. OMP is a 19 kDa protein but these immunoprecipitation studies have revealed the unexpected presence of a 38 kDa band in addition to the expected 19 kDa band. Furthermore, the 38 kDa form was preferentially co-immunoprecipitated with Bex from cell extracts. In-gel tryptic digestion, mass spectrometry, and two-dimensional gel electrophoresis indicate that the 38 kDa protein behaves as a covalently cross-linked OMP-homodimer. The 38 kDa band was also identified in western blots of olfactory epithelium demonstrating its presence in vivo. The stabilities and subcellular localizations of the OMP-monomer and -dimer were studied in transfected cells. These results demonstrated that the OMP-dimer is much less stable than the monomer, and that while the monomer is present both in the nuclear and cytosolic compartments, the dimer is preferentially located in a Triton X-100 insoluble cytoskeletal fraction. These novel observations led us to hypothesize that regulation of the level of the rapidly turning-over OMP-dimer and its interaction with Bex1/2 is critical for OMP function in sensory transduction.  相似文献   
996.
Topographically precise projections are established early in neural development. One such topographically organized network is the auditory brainstem. In the chick, the auditory nerve transmits auditory information from the cochlea to nucleus magnocellularis (NM). NM in turn innervates nucleus laminaris (NL) bilaterally. These projections preserve the tonotopy established at the level of the cochlea. We have begun to examine the expression of Eph family proteins during the formation of these connections. Optical density measurements were used to describe gradients of Eph proteins along the tonotopic axis of NL in the neuropil, the somata, and the NM axons innervating NL at embryonic day 10, when synaptic connections from NM to NL are established. At E10-11, NL dorsal neuropil expresses EphA4 at a higher concentration in regions encoding high frequency sounds, decreasing in concentration monotonically toward the low frequency (caudolateral) end. In the somata, both EphA4 and ephrin-B2 are concentrated at the high frequency end of the nucleus. These tonotopic gradients disappear between E13 and E15, and expression of these molecules is completely downregulated by hatching. The E10-11 patterns run counter to an apparent gradient in dendrite density, as indicated by microtubule associated protein 2 (MAP2) immunolabeling. Finally, ephrin-B2 is also expressed in a gradient in tissue ventral to the NL neuropil. Our findings thus suggest a possible conserved mechanism for establishing topographic projections in diverse sensory systems. These results of this study provide a basis for the functional examination of the role of Eph proteins in the formation of tonotopic maps in the brainstem.  相似文献   
997.
During the Drosophila life-cycle two sets of neuromuscular junctions are generated: the embryonic/larval NMJs develop during the first half, followed by the period of metamorphosis during which the adult counterpart is generated. Development of the adult innervation pattern is preceded by a withdrawal of larval NMJs, which occurs at the onset of metamorphosis, and is followed by adult-specific motor neuron outgrowth to innervate the newly developing adult fibers. Establishment of the adult innervation pattern occurs in the context of a broader restructuring of the nervous system, which results in the development of neural circuits that are necessary to carry out behaviors specific to the adult. In this article, we follow development of the dorsal longitudinal muscle (DLM) innervation pattern through metamorphosis. We find that the initial period of motor neuron elaboration is followed by a phase of extensive pruning resulting in a threefold reduction of neuromuscular contacts. This event establishes the adult pattern of second order branching. Subsequent higher order branching from the second order "contact" points generates the characteristic multiterminal innervation pattern of the DLMs. Boutons begin to appear after the pruning phase, and are much smaller than their larval counterparts. Additionally, we demonstrate that the DLM innervation is altered in the hyperexcitable double mutant, ether a go-go Shaker, and that the phenotype is suppressed by the hypoexcitable mutant, nap(ts1). Our results demonstrate that electrical activity regulates the patterning of DLM innervation during metamorphosis.  相似文献   
998.
We present a method for investigating genetic population structure using sequence data. Our hypothesis states that the parameters most responsible for the formation of genetic structure among different populations are the relative rates of mutation () and migration (M). The evolution of genetic structure among different populations requires rates of M because this allows population-specific mutation to accumulate. Rates of M will result in populations that are effectively panmictic because genetic differentiation will not develop among demes. Our test is implemented by using a parametric bootstrap to create the null distribution of the likelihood of the data having been produced under an appropriate model of sequence evolution and a migration rate sufficient to approximate panmixia. We describe this test, then apply it to mtDNA data from 243 plethodontid salamanders. We are able to reject the null hypothesis of no population structure on all but smallest geographic scales, a result consistent with the apparent lack of migration in Plethodon idahoensis. This approach represents a new method of investigating population structure with haploid DNA, and as such may be particularly useful for preliminary investigation of non-model organisms in which multi-locus nuclear data are not available.  相似文献   
999.
MDA-MB-231, MCF7, and SKOV3 cancer cells, but not HEK-293 cells, expressed mRNA for the leukocyte G protein-coupled 5-oxo-eicosatetraenoate (ETE) OXE receptor. 5-Oxo-ETE, 5-oxo-15-OH-ETE, and 5-HETE stimulated the cancer cell lines but not HEK-293 cells to mount pertussis toxin-sensitive proliferation responses. Their potencies in eliciting this response were similar to their known potencies in activating leukocytes and OXE receptor-transfected cells. However, high concentrations of 5-oxo-ETE and 5-oxo-15-OH-ETE, but not 5-HETE, arrested growth and caused apoptosis in all four cell lines; these responses were pertussis toxin-resistant. The same high concentrations of the oxo-ETEs but again not 5-HETE also activated peroxisome proliferator-activated receptor (PPAR)-gamma. Pharmacological studies indicated that this activation did not mediate their effects on proliferation. These results are the first to implicate the OXE receptor in malignant cell growth and to show that 5-oxo-ETEs activate cell death programs as well as PPARgamma independently of this receptor.  相似文献   
1000.
The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within approximately 4 A of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (> or =14 Angstroms) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号