首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3536篇
  免费   275篇
  国内免费   1篇
  2022年   44篇
  2021年   88篇
  2020年   53篇
  2019年   48篇
  2018年   65篇
  2017年   51篇
  2016年   108篇
  2015年   151篇
  2014年   174篇
  2013年   224篇
  2012年   242篇
  2011年   233篇
  2010年   161篇
  2009年   120篇
  2008年   160篇
  2007年   162篇
  2006年   172篇
  2005年   145篇
  2004年   141篇
  2003年   108篇
  2002年   107篇
  2001年   75篇
  2000年   58篇
  1999年   58篇
  1998年   34篇
  1997年   32篇
  1995年   28篇
  1994年   22篇
  1993年   22篇
  1992年   38篇
  1991年   26篇
  1990年   36篇
  1989年   22篇
  1988年   34篇
  1987年   34篇
  1986年   41篇
  1985年   27篇
  1984年   29篇
  1983年   27篇
  1982年   29篇
  1981年   33篇
  1980年   20篇
  1979年   29篇
  1977年   25篇
  1975年   21篇
  1974年   22篇
  1973年   24篇
  1972年   25篇
  1970年   19篇
  1969年   19篇
排序方式: 共有3812条查询结果,搜索用时 93 毫秒
901.
Emergence of high-throughput sequencing tools and omics technologies paved the way for systems biology in last decade. While we have started to look at the biology of the plant in a more unified manner, the integration of such knowledge in agricultural biotechnology has become an arena of potential interest. The network of several central molecules operating in various life and developmental processes are now more adequately known, and fine tuning of such molecule pools, if connected to stress response, can result in enhanced stress tolerance of plants.This review interprets the potential of manipulation of myo-inositol and its derivatives in generation of transgenic crop plants. Being a molecule of central importance in plant life, inositol is connected to numerous life processes. The exploration of such pathways indicates that inositol itself and many of its derivatives can impart abiotic stress tolerance (against salinity, dehydration, chilling or oxidative stress) to plants when overexpressed. We propose that engineering inositol metabolic network is a potential approach towards stress-tolerant transgenic crop plant generation and thus its exploitation in agricultural biotechnology is the call of time.  相似文献   
902.
903.
Interferon-stimulated gene 56 (ISG56) family members play important roles in blocking viral replication and regulating cellular functions, however, their underlying molecular mechanisms are largely unclear. Here, we present the crystal structure of ISG54, an ISG56 family protein with a novel RNA-binding structure. The structure shows that ISG54 monomers have 9 tetratricopeptide repeat-like motifs and associate to form domain-swapped dimers. The C-terminal part folds into a super-helical structure and has an extensively positively-charged nucleotide-binding channel on its inner surface. EMSA results show that ISG54 binds specifically to some RNAs, such as adenylate uridylate (AU)-rich RNAs, with or without 5′ triphosphorylation. Mutagenesis and functional studies show that this RNA-binding ability is important to its antiviral activity. Our results suggest a new mechanism underlying the antiviral activity of this interferon-inducible gene 56 family member.  相似文献   
904.
Hepatic stellate cells (HSC), the key fibrogenic cells of the liver, transdifferentiate into myofibroblasts upon phagocytosis of apoptotic hepatocytes. Galectin-3, a β-galactoside-binding lectin, is a regulator of the phagocytic process. In this study, our aim was to study the mechanism by which extracellular galectin-3 modulates HSC phagocytosis and activation. The role of galectin-3 in engulfment was evaluated by phagocytosis and integrin binding assays in primary HSC. Galectin-3 expression was studied by real-time PCR and enzyme-linked immunosorbent assay, and in vivo studies were done in wild-type and galectin-3(-/-) mice. We found that HSC from galectin-3(-/-) mice displayed decreased phagocytic activity, expression of transforming growth factor-β1, and procollagen α1(I). Recombinant galectin-3 reversed this defect, suggesting that extracellular galectin-3 is required for HSC activation. Galectin-3 facilitated the α(v)β(3) heterodimer-dependent binding, indicating that galectin-3 modulates HSC phagocytosis via cross-linking this integrin and enhancing the tethering of apoptotic cells. Blocking integrin α(v)β(3) resulted in decreased phagocytosis. Galectin-3 expression and release were induced in active HSC engulfing apoptotic cells, and this was mediated by the nuclear factor-κB signaling. The upregulation of galectin-3 in active HSC was further confirmed in vivo in bile duct-ligated (BDL) rats. Galectin-3(-/-) mice displayed significantly decreased fibrosis, with reduced expression of α-smooth muscle actin and procollagen α1(I) following BDL. In summary, extracellular galectin-3 plays a key role in liver fibrosis by mediating HSC phagocytosis, activation, and subsequent autocrine and paracrine signaling by a feedforward mechanism.  相似文献   
905.
906.
907.
Geminiviruses primarily encode only few factors, such as replication initiator protein (Rep), and need various host cellular machineries for rolling-circle replication (RCR) and/or recombination-dependent replication (RDR). We have identified a host factor, RAD54, in a screen for Rep-interacting partners and observed its role in DNA replication of the geminivirus mungbean yellow mosaic India virus (MYMIV). We identified the interacting domains ScRAD54 and MYMIV-Rep and observed that ScRAD54 enhanced MYMIV-Rep nicking, ATPase, and helicase activities. An in vitro replication assay demonstrated that the geminiviral DNA replication reaction depends on the viral Rep protein, viral origin of replication sequences, and host cell-cycle proteins. Rad54-deficient yeast nuclear extract did not support in vitro viral DNA replication, while exogenous addition of the purified ScRAD54 protein enhanced replication. The role of RAD54 in in planta replication was confirmed by the transient replication assay; i.e., agroinoculation studies. RAD54 is a well-known recombination/repair protein that uses its DNA-dependent ATPase activity in conjunction with several other host factors. However, this study demonstrates for the first time that the eukaryotic rolling-circle replicon depends on the RAD54 protein.  相似文献   
908.
Chrome mining activity has contributed intensively towards pollution of hexavalent chromium around Sukinda Valley, Orissa, India. In an attempt to study the specific contribution of exopolysaccharides (EPS) extracted from indigenous isolates towards Cr(VI) reduction, three chromium (VI) tolerant strains were isolated from the effluent mining sludge. Based on the tolerance towards Cr(VI) and EPS production capacity, one of them was selected for further work. The taxonomic identity of the selected strain was confirmed to be Enterobacter cloacae (showing 98% similarity in BLAST search to E. cloacae) through 16S rRNA analysis. The EPS production was observed to increase with increasing Cr(VI) concentration in the growth medium, highest being 0.078 at 100?mg/l Cr(VI). The extracted EPS from Enterobacter cloacae SUKCr1D was able to reduce 31.7% of Cr(VI) at 10?mg/l concentration, which was relevant to the prevailing natural concentrations at Sukinda mine effluent sludge. The FT-IR spectral studies confirmed the surface chemical interactions of hexavalent chromium with EPS.  相似文献   
909.
Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.  相似文献   
910.
The receptor for activated C kinase 1 (RACK1) is a conserved scaffold protein that helps regulate a range of cell activities including cell growth, shape, and protein translation. We report that a homologue of RACK1 is required for cytokinesis in pathogenic Trypanosoma brucei. The protein, referred to as TRACK, is comprised of WD repeat elements and can complement cpc2 null mutants of Schizosaccharomyces pombe. TRACK is expressed throughout the trypanosome life cycle and is distributed predominantly in a perinuclear region and the cytoplasm but not along the endoplasmic reticulum, mitochondrion, or cleavage furrow of dividing cells. When tetracycline-inducible RNA interference (RNAi) is used to deplete the cellular content of TRACK, the cells remain metabolically active, but growth is inhibited. In bloodstream forms, growth arrest is due to a delay in the onset of cytokinesis. By contrast, procyclic forms are able to initiate cytokinesis in the absence of TRACK but arrest midway through cell cleavage. The RNAi cells undergo multiple rounds of partial cytokinesis and accumulate nuclei and cytoplasmic extensions with attached flagella. The TRACK RNAi construct is also inducible within infected mice. Under these conditions parasites are eliminated from peripheral blood within 3 days post-infection. Taken as a whole, these data indicate that trypanosomes utilize a RACK1 homologue to regulate the final stages of mitosis. Moreover, disrupting the interaction between TRACK and its partners might be targeted in the design of novel therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号