首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   5篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   2篇
  2019年   10篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   7篇
  2014年   9篇
  2013年   11篇
  2012年   11篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   12篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1992年   1篇
  1991年   2篇
  1966年   1篇
排序方式: 共有140条查询结果,搜索用时 62 毫秒
81.
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite’s replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.  相似文献   
82.
83.
This article presents a study of the efficiency and degradation pattern of samples of petroleum sludge and polluted sandy soil from an oil refinery. A bacterial consortium, consisting of strains from the genera Pseudomonas, Achromobacter, Bacillus and Micromonospora, was isolated from a petroleum sludge sample and characterized. The addition of nitrogen and phosphorus nutrients and a chemical surfactant to both the samples and bioaugmentation to the soil sample were applied under laboratory conditions. The extent of biodegradation was monitored by the gravimetric method and analysis of the residual oil by gas chromatography. Over a 12-week experiment, the achieved degree of TPH (total petroleum hydrocarbon) degradation amounted to 82–88% in the petroleum sludge and 86–91% in the polluted soil. Gas chromatography–mass spectrometry was utilized to determine the biodegradability and degradation rates of n-alkanes, isoprenoids, steranes, diasteranes and terpanes. Complete degradation of the n-alkanes and isoprenoids fractions occurred in both the samples. In addition, the intensities of the peaks corresponding to tricyclic terpenes and homohopanes were decreased, while significant changes were also observed in the distribution of diasteranes and steranes.  相似文献   
84.
85.
Stimulated erythropoiesis and reticulocytosis can be induced by daily bleeding, or by phenylhydrazine (PHZ) treatment. We compared the in vivo effects of PHZ and bleeding treatment on haematological, energy and redox status parameters in red blood cells (RBC) of rats. The results showed that all followed haematological parameters were significantly lower in bleeding, compared to PHZ-treated rats. PHZ induced even 2.58-fold higher reticulocytosis as compared to bleeding treatment. Although PHZ induced higher reticulocytosis, respiration intensity and energy production was lower than in bleeding-induced reticulocytes. These alterations were the consequence of increased superoxide anion and peroxynitrite concentrations in PHZ-treated rats. Bleeding treatment resulted in increased activity of an antioxidative enzyme, superoxide dismutase. In conclusion, differences in these two experimental models for reticulocytosis may be used as tools for appropriate pharmacological testing of redox-active substances considering energy and redox processes, as well as apoptosis pathways.  相似文献   
86.
The performance of Saccharomyces cerevisiae MBG3964, a strain able to tolerate >18% v/v ethanol, was compared to leading industrial ethanol strain, Fermentis Ethanol Red, under high gravity corn mash fermentation conditions. Compared to the industrial ethanol strain, MBG3964 gave increased alcohol yield (140 g L−1 vs. 126 g L−1), lower residual sugar (4 g L−1 vs. 32 g L−1), and lower glycerol (11 g L−1 vs. 12 g L−1). After 72 h fermentation, MBG3964 showed about 40% viability, whereas the control yeast was only about 3% viable. Based on modelling, the higher ethanol tolerant yeast could increase the profitability of a corn-ethanol plant and help it remain viable through higher production, lower unit heating requirements and extra throughput. A typical 50 M gal y−1 dry mill ethanol plant that sells dried distiller’s grain could potentially increase its profit by nearly $US3.4 M y−1 due solely to the extra yield, and potentially another $US4.1 M y−1 if extra throughput is possible.  相似文献   
87.
SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases.  相似文献   
88.
89.
Since their invention in 1994, fluorescent dyes such as carboxyfluorescein diacetate succinimidyl ester (CFSE) are used for cell proliferation analysis in flow cytometry. Importantly, the interpretation of such assays relies on the assumption that the label is divided equally between the daughter cells upon cell division. However, recent experimental studies indicate that division of cells is not perfectly symmetric and there is unequal distribution of protein between sister cell pairs. The uneven partition of protein or mass to daughter cells can lead to an overlap in the generations of CFSE-labelled cells with straightforward consequences for the resolution of individual generations. Numerous mathematical models developed so far for the analysis of CFSE proliferation assay incorporate the premise that the CFSE fluorescence intensity is halved in the two daughter cells. Here, we propose a novel modelling approach for the analysis of the CFSE cell proliferation assays which are characterized by poorly resolved peaks of cell generations in flow cytometric histograms. We formulate a mathematical model in the form of a system of delay hyperbolic partial differential equations which provides a good agreement with the CFSE histograms time-series data and allows an analytical treatment. The model is a further generalization of the recently proposed class of division- and label-structured models as it considers an asymmetric cell division. In addition, the basic structure of the cell cycle, i.e. the resting and cycling cell compartments, is taken into account. The model is used to estimate fundamental parameters such as activation rate, duration of the cell cycle, apoptosis rate, CFSE decay rate and asymmetry factor in cell division of monoclonal T cells during cognate interaction with dendritic cells.  相似文献   
90.
Our investigation of the catalytic properties of Saccharomyces cerevisiae α-glucosidase (AGL) using hydroxybenzyl alcohol (HBA) isomers as transglucosylation substrates and their glucosides in hydrolytic reactions demonstrated interesting findings pertaining to the aglycon specificity of this important enzyme. AGL specificity increased from the para(p)- to the ortho(o)-HBA isomer in transglucosylation, whereas such AGL aglycon specificity was not seen in hydrolysis, thus indicating that the second step of the reaction (i.e., binding of the glucosyl acceptor) is rate-determining. To study the influence of substitution pattern on AGL kinetics, we compared AGL specificity, inferred from kinetic constants, for HBA isomers and other aglycon substrates. The demonstrated inhibitory effects of HBA isomers and their corresponding glucosides on AGL-catalyzed hydrolysis of p-nitrophenyl α-glucoside (PNPG) suggest that HBA glucosides act as competitive, whereas HBA isomers are noncompetitive, inhibitors. As such, we postulate that aromatic moieties cannot bind to an active site unless an enzyme-glucosyl complex has already formed, but they can interact with other regions of the enzyme molecule resulting in inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号