首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3970篇
  免费   300篇
  2023年   37篇
  2022年   101篇
  2021年   132篇
  2020年   136篇
  2019年   129篇
  2018年   164篇
  2017年   141篇
  2016年   207篇
  2015年   249篇
  2014年   263篇
  2013年   320篇
  2012年   352篇
  2011年   299篇
  2010年   169篇
  2009年   173篇
  2008年   188篇
  2007年   182篇
  2006年   157篇
  2005年   139篇
  2004年   106篇
  2003年   97篇
  2002年   89篇
  2001年   58篇
  2000年   62篇
  1999年   63篇
  1998年   9篇
  1997年   12篇
  1996年   12篇
  1995年   16篇
  1994年   5篇
  1993年   8篇
  1992年   16篇
  1991年   17篇
  1990年   15篇
  1989年   16篇
  1988年   10篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   5篇
  1980年   9篇
  1979年   8篇
  1978年   7篇
  1971年   6篇
  1970年   3篇
  1968年   3篇
  1967年   4篇
排序方式: 共有4270条查询结果,搜索用时 31 毫秒
141.
The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol–sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml?1 (36 h), 47.50 U ml?1 (36 h) and 68.36 U ml?1 (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml?1 (18 h) on cassava, 79.17 U ml?1 (12 h) on potato and 55.37 U ml?1 (in 6 h and max 77.75 U ml?1 in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells.  相似文献   
142.
Parasitic infections by Leishmania parasites remains a severe public health problem, especially in developing countries where it is highly endemic. Chemotherapy still remains a first option for the treatment of those diseases, despite the fact that available drugs exhibit a variety of shortcomings. Thus, innovative, less toxic more affordable and effective antileishmanial agents are urgently needed. The marine environment holds an immeasurable bio- and chemical diversity, being a valuable source of natural products with therapeutic potential. As invertebrates comprise about 60 % of all marine organisms, bioprospecting this class of organisms for antileishmanial properties may unravel unique and selective hit molecules. In this context, this review covers results on the literature of marine invertebrate extracts and pure compounds evaluated against Leishmania parasites mainly by in vitro methods. It comprises results obtained from the phyla Porifera, Cnidaria, Bryozoa (Ectoprota), Mollusca, Echinodermata, Annelida, Cetnophora, Platyhelminthes, sub phyla Crustacea (phylum Arthropoda) and Tunicata (phylum Chordata). Moreover, structure–activity relationships and possible mechanisms of action are mentioned, whenever available information is provided. About 70 species of marine invertebrates belonging to seven different phyla are included in this work. Besides a variety of crude extracts, a total of 140 pure compounds was tested against different Leishmania species. Although the research on the antileishmanial potential of marine invertebrates is in its early beginnings, promising results have been achieved that encourage further research. As more extracts and compounds are being screened, the possibility of finding active and selective antileishmanial molecules increases, rising new hope in the search for new treatments against leishmaniases.  相似文献   
143.
Patterns of sex‐chromosome differentiation and gonadal development have been shown to vary among populations of Rana temporaria along a latitudinal transect in Sweden. Frogs from the northern‐boreal population of Ammarnäs displayed well‐differentiated X and Y haplotypes, early gonadal differentiation, and a perfect match between phenotypic and genotypic sex. In contrast, no differentiated Y haplotypes could be detected in the southern population of Tvedöra, where juveniles furthermore showed delayed gonadal differentiation. Here, we show that Dmrt1, a gene that plays a key role in sex determination and sexual development across all metazoans, displays significant sex differentiation in Tvedöra, with a Y‐specific haplotype distinct from Ammarnäs. The differential segment is not only much shorter in Tvedöra than in Ammarnäs, it is also less differentiated and associates with both delayed gonadal differentiation and imperfect match between phenotypic and genotypic sex. Whereas Tvedöra juveniles with a local Y haplotype tend to ultimately develop as males, those without it may nevertheless become functional XX males, but with strongly female‐biased progeny. Our findings suggest that the variance in patterns of sex determination documented in common frogs might result from a genetic polymorphism within a small genomic region that contains Dmrt1. They also substantiate the view that recurrent convergences of sex determination toward a limited set of chromosome pairs may result from the co‐option of small genomic regions that harbor key genes from the sex‐determination pathway.  相似文献   
144.
Candidemia is a growing problem in hospitals all over the world. Despite advances in the medical support of critically ill patients, candidiasis leads to prolonged hospitalization, and has a crude mortality rate around 50%. We conducted a multicenter surveillance study in 16 hospitals distributed across five regions of Brazil to assess the incidence, species distribution, antifungal susceptibility, and risk factors for bloodstream infections due to Candida species. From June 2007 to March 2010, we studied a total of 2,563 nosocomial bloodstream infection (nBSI) episodes. Candida spp. was the 7th most prevalent agent. Most of the patients were male, with a median age of 56 years. A total of 64 patients (46.7%) were in the ICU when candidemia occurred. Malignancies were the most common underlying condition (32%). The crude mortality rate of candidemia during the hospital admission was 72.2%. Non-albicans species of Candida accounted for 65.7% of the 137 yeast isolates. C. albicans (34.3%), Candida parapsilosis (24.1%), Candida tropicalis (15.3%) and Candida glabrata (10.2%) were the most prevalent species. Only 47 out of 137 Candida isolates were sent to the reference laboratory for antifungal susceptibility testing. All C. albicans, C. tropicalis and C. parapsilosis isolates were susceptible to the 5 antifungal drugs tested. Among 11 C. glabrata isolates, 36% were resistant to fluconazole, and 64% SDD. All of them were susceptible to anidulafungin and amphotericin B. We observed that C. glabrata is emerging as a major player among non-albicans Candida spp. and fluconazole resistance was primarily confined to C. glabrata and C. krusei strains. Candida resistance to echinocandins and amphotericin B remains rare in Brazil.Mortality rates remain increasingly higher than that observed in the Northern Hemisphere countries, emphasizing the need for improving local practices of clinical management of candidemia, including early diagnosis, source control and precise antifungal therapy.  相似文献   
145.

Background

Cynomolgus macaques (Macaca fascicularis) represent a feasible model for research on Chagas disease since natural T. cruzi infection in these primates leads to clinical outcomes similar to those observed in humans. However, it is still unknown whether these clinical similarities are accompanied by equivalent immunological characteristics in the two species. We have performed a detailed immunophenotypic analysis of circulating leukocytes together with systems biology approaches from 15 cynomolgus macaques naturally infected with T. cruzi (CH) presenting the chronic phase of Chagas disease to identify biomarkers that might be useful for clinical investigations.

Methods and Findings

Our data established that CH displayed increased expression of CD32+ and CD56+ in monocytes and enhanced frequency of NK Granzyme A+ cells as compared to non-infected controls (NI). Moreover, higher expression of CD54 and HLA-DR by T-cells, especially within the CD8+ subset, was the hallmark of CH. A high level of expression of Granzyme A and Perforin underscored the enhanced cytotoxicity-linked pattern of CD8+ T-lymphocytes from CH. Increased frequency of B-cells with up-regulated expression of Fc-γRII was also observed in CH. Complex and imbricate biomarker networks demonstrated that CH showed a shift towards cross-talk among cells of the adaptive immune system. Systems biology analysis further established monocytes and NK-cell phenotypes and the T-cell activation status, along with the Granzyme A expression by CD8+ T-cells, as the most reliable biomarkers of potential use for clinical applications.

Conclusions

Altogether, these findings demonstrated that the similarities in phenotypic features of circulating leukocytes observed in cynomolgus macaques and humans infected with T. cruzi further supports the use of these monkeys in preclinical toxicology and pharmacology studies applied to development and testing of new drugs for Chagas disease.  相似文献   
146.
147.
Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4''-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors.  相似文献   
148.
Forest restoration requires strategies such as passive restoration to balance financial investments and ecological outcomes. However, the ecological outcomes of passive restoration are traditionally regarded as uncertain. We evaluated technical and legal strategies for balancing economic costs and ecological outcomes of passive versus active restoration in agricultural landscapes. We focused in the case of Brazil, where we assessed the factors driving the proportion of land allocated to passive and active restoration in 42 programs covering 698,398 hectares of farms in the Atlantic Forest, Atlantic Forest/cerrado ecotone and Amazon; the ecological outcomes of passive and active restoration in 2955 monitoring plots placed in six restoration programs; and the legal framework developed by some Brazilian states to balance the different restoration approaches and comply with legal commitments. Active restoration had the highest proportion of land allocated to it (78.4%), followed by passive (14.2%) and mixed restoration (7.4%). Passive restoration was higher in the Amazon, in silviculture, and when remaining forest cover was over 50 percent. Overall, both restoration approaches showed high levels of variation in the ecological outcomes; nevertheless, passively restored areas had a smaller percentage canopy cover, lower species density, and less shrubs and trees (dbh > 5 cm). The studied legal frameworks considered land abandonment for up to 4 years before deciding on a restoration approach, to favor the use of passive restoration. A better understanding of the biophysical and socioeconomic features of areas targeted for restoration is needed to take a better advantage of their natural regeneration potential.  相似文献   
149.
The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of theERG11 gene in clinical isolates of Candidaspecies known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei - A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. kruseidemands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号