首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   12篇
  66篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1972年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
41.
Large DNA constructs of arbitrary sequences can currently be assembled with relative ease by joining short synthetic oligodeoxynucleotides (oligonucleotides). The ability to mass produce these synthetic genes readily will have a significant impact on research in biology and medicine. Presently, high-throughput gene synthesis is unlikely, due to the limits of oligonucleotide synthesis. We describe a microfluidic PicoArray method for the simultaneous synthesis and purification of oligonucleotides that are designed for multiplex gene synthesis. Given the demand for highly pure oligonucleotides in gene synthesis processes, we used a model to improve key reaction steps in DNA synthesis. The oligonucleotides obtained were successfully used in ligation under thermal cycling conditions to generate DNA constructs of several hundreds of base pairs. Protein expression using the gene thus synthesized was demonstrated. We used a DNA assembly strategy, i.e. ligation followed by fusion PCR, and achieved effective assembling of up to 10 kb DNA constructs. These results illustrate the potential of microfluidics-based ultra-fast oligonucleotide parallel synthesis as an enabling tool for modern synthetic biology applications, such as the construction of genome-scale molecular clones and cell-free large scale protein expression.  相似文献   
42.
Pooled short-hairpin RNA (shRNA) library screening is a powerful tool for identifying a set of genes in biological pathways that require stable expression to produce a desired phenotype. Massive parallel sequencing of half-hairpins has proven highly variable and has not given satisfactory results concerning the relative abundance of different shRNAs before and after selection. Here, the authors describe a method for quantitative comparison of half-hairpins from pooled shRNAs in the mir30-based pGIPZ vector that is analyzed by massive parallel sequencing. Introducing a multiplexing code and refining the sample preparation scheme resulted in the predicted ability to detect twofold enrichments. These improvements should permit half-hairpin sequencing to analyze either dropout screens or selective pooled shRNA screens of limited stringency to analyze phenotypes not accessible in transient experiments.  相似文献   
43.
The serendipitous discovery of the spontaneous growth of protein crystals inside cells has opened the field of crystallography to chemically unmodified samples directly available from their natural environment. On the one hand, through in vivo crystallography, protocols for protein crystal preparation can be highly simplified, although the technique suffers from difficulties in sampling, particularly in the extraction of the crystals from the cells partly due to their small sizes. On the other hand, the extremely intense X-ray pulses emerging from X-ray free-electron laser (XFEL) sources, along with the appearance of serial femtosecond crystallography (SFX) is a milestone for radiation damage-free protein structural studies but requires micrometre-size crystals. The combination of SFX with in vivo crystallography has the potential to boost the applicability of these techniques, eventually bringing the field to the point where in vitro sample manipulations will no longer be required, and direct imaging of the crystals from within the cells will be achievable. To fully appreciate the diverse aspects of sample characterization, handling and analysis, SFX experiments at the Japanese SPring-8 angstrom compact free-electron laser were scheduled on various types of in vivo grown crystals. The first experiments have demonstrated the feasibility of the approach and suggest that future in vivo crystallography applications at XFELs will be another alternative to nano-crystallography.  相似文献   
44.
45.
46.
Nucleic acid hybridization serves as backbone for many high-throughput systems for detection, expression analysis, comparative genomics and re-sequencing. Specificity of hybridization between probes and intended targets is always critical. Approaches to ensure and evaluate specificity include use of mismatch probes, obtaining dissociation curves rather than single temperature hybridizations, and comparative hybridizations. In this study, we quantify effects of mismatch type and position on intensity of hybridization signals and provide a new approach based on dissociation rate constants to evaluate specificity of hybridized signals in complex target mixtures. Using an extensive set of 18mer oligonucleotide probes on an in situ synthesized biochip platform, we demonstrate that mismatches in the center of the probe are more discriminating than mismatches toward the extremities of the probe and mismatches toward the attached end are less discriminating than those toward the loose end. The observed destabilizing effect of a mismatch type agreed in general with predictions using the nearest neighbor model. Use of a new parameter, specific dissociation temperature (Td-w, temperature of maximum specific dissociation rate constant), obtained from probe–target duplex dissociation profiles considerably improved the evaluation of specificity. These results have broad implications for hybridization data obtained from complex mixtures of nucleic acids.  相似文献   
47.
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats.  相似文献   
48.
RNA14 was identified as a gene involved in premessenger RNA cleavage and polyadenylation. These processing steps take place in the nucleus, but the Rna14p protein is distributed in both the nucleus and the cytoplasm. By subcellular fractionation, we show here that the cytoplasmic fraction is localised in the mitochondria. In order to understand the role played by Rna14p in mitochondria, we have searched for new thermosensitive alleles of RNA14. We isolated thirteen new mutants. Some of them are deficient in mRNA cleavage and polyadenylation at the restrictive temperature - like the first mutant identified (rna14-1). However, others do not appear to be impaired in any of the steps in RNA metabolism investigated, nor do they appear to be involved in the replication or expression of mitochondrial DNA or in respiration. The localisation data strongly suggest that, besides an essential function in mRNA polyadenylation, the Rna14p protein has a non essential function in mitochondrial metabolism.  相似文献   
49.

Background  

Tumor cells cultured in vitro are widely used to investigate the molecular biology of cancers and to evaluate responses to drugs and other agents. The full extent to which gene expression in cancer cells is modulated by extrinsic factors and by the microenvironment in which the cancer cells reside remains to be determined. Two cancer cell lines (A549 lung adenocarcinoma and U118 glioblastoma) were transplanted subcutaneously into immunodeficient mice to form tumors. Global gene-expression profiles of the tumors were determined, based on analysis of expression of human genes, and compared with expression profiles of the cell lines grown in culture.  相似文献   
50.
An affinity-purified antibody (anti-Cdc2C) raised against the carboxy terminal sequence LDNQIKKM of p34cdc2 uncovered in NIH 3T3 cells a protein subpopulation, the location and the level of accumulation of which evolve during progression through the cell cycle: it first emerges inside the nucleus in late G1/early S phase and continues to build up principally in this location throughout S phase; a cytoplasmic expression then becomes apparent near the end of S phase, develops during G2 and sometimes prevails over the nuclear expression; it finally relocates to the nucleus in early prophase. We propose that a major part of this subpopulation would represent p34cdc2 molecules existing inside a complex with cyclin B1. NIH 3T3 cells arrested in early S phase with aphidicolin do not commit prematurely to mitosis which indicates that the regulatory pathway involved in preserving the temporal order of S and M phases is functioning in these conditions. Conjugated Western blot analysis and immunofluorescence microscopy showed that cyclin A, cyclin B1 and tyrosine-phosphorylated p34cdc2 continue to build up predominantly in the nucleus of the arrested cells. After release from the block, the cells rapidly reenter S and G2 phases and, concomitantly, cyclin B1 and tyrosine-phosphorylated p34cdc2 relocate to the cytoplasm before redistributing again in the nucleus in early prophase. These data would suggest that delaying the onset of M phase in NIH 3T3 cells in which the rate of DNA replication is reduced, is first ensured by a mechanism that prevents the cytoplasmic relocation of inactive p34cdc2/cyclin B1 complexes continually forming in the nucleus once the G1 period of mitotic cyclin instability is over.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号