首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1585篇
  免费   140篇
  国内免费   1篇
  1726篇
  2022年   13篇
  2021年   13篇
  2020年   12篇
  2019年   11篇
  2018年   19篇
  2017年   20篇
  2016年   19篇
  2015年   31篇
  2014年   50篇
  2013年   77篇
  2012年   63篇
  2011年   73篇
  2010年   45篇
  2009年   40篇
  2008年   83篇
  2007年   90篇
  2006年   64篇
  2005年   76篇
  2004年   81篇
  2003年   69篇
  2002年   63篇
  2001年   66篇
  2000年   62篇
  1999年   43篇
  1998年   22篇
  1997年   19篇
  1996年   20篇
  1995年   18篇
  1994年   16篇
  1993年   13篇
  1992年   33篇
  1991年   42篇
  1990年   37篇
  1989年   27篇
  1988年   34篇
  1987年   28篇
  1986年   22篇
  1985年   18篇
  1983年   13篇
  1982年   9篇
  1981年   9篇
  1980年   15篇
  1979年   12篇
  1977年   12篇
  1975年   10篇
  1974年   14篇
  1973年   15篇
  1971年   10篇
  1970年   16篇
  1969年   13篇
排序方式: 共有1726条查询结果,搜索用时 15 毫秒
11.
It is shown that rat liver isoleucyl-tRNA formation in the presence of Mg2+ is inhibited by poly(G), poly(I) or ribosomes and that this inhibition is prevented by polyamines. The inhibition is found to be noncompetitive with respect to tRNA.  相似文献   
12.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
13.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
14.
The structure and function of a cadaverine-lysine antiporter CadB and a putrescine-ornithine antiporter PotE in Escherichia coli were evaluated using model structures based on the crystal structure of AdiC, an agmatine-arginine antiporter, and the activities of various CadB and PotE mutants. The central cavity of CadB, containing the substrate binding site, was wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE was dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) of CadB, and Cys(62), Trp(201), Glu(207), Trp(292), and Tyr(425) of PotE were strongly involved in the antiport activities. In addition, Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) of CadB were involved preferentially in cadaverine uptake at neutral pH, while only Tyr(90) of PotE was involved preferentially in putrescine uptake. The results indicate that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. These results also suggest that several amino acid residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine in the periplasm at neutral pH. All the amino acid residues identified as being strongly involved in both the antiport and uptake activities were located on the surface of the transport path consisting of the central cavity and TM12.  相似文献   
15.
The effects of polyamines on the synthesis of various final sigma subunits of RNA polymerase were studied using Western blot analysis. Synthesis of final sigma(28) was stimulated 4.0-fold and that of final sigma(38) was stimulated 2.3-fold by polyamines, whereas synthesis of other final sigma subunits was not influenced by polyamines. Stimulation of final sigma(28) synthesis was due to an increase in the level of cAMP, which occurred through polyamine stimulation of the synthesis of adenylate cyclase at the level of translation. Polyamines were found to increase the translation of adenylate cyclase mRNA by facilitating the UUG codon-dependent initiation. Analysis of RNA secondary structure suggests that exposure of the Shine-Dalgarno sequence of mRNA is a prerequisite for polyamine stimulation of the UUG codon-dependent initiation.  相似文献   
16.
Characterization of dehydropeptidase I in the rat lung   总被引:1,自引:0,他引:1  
The activity of dehydropeptidase I in rat tissues decreases in the order of lung greater than kidney greater than liver-spleen greater than other tissues, while aminopeptidase activity is high in the kidney, and lower in the lung than in other tissues. Dehydropeptidase I was solubilized from the membrane fraction of rat lung by treatment with papain and purified by DEAE-cellulose column chromatography, affinity chromatography on concanavalin-A-Sepharose and high-performance liquid chromatography gel filtration. The purified preparation was found to be homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The relative molecular mass was estimated to be 150,000 by gel filtration, comprising a homodimer of two 80,000-Mr subunits. The enzyme activity was inhibited by cilastatin, o-phenanthroline and ATP. This enzyme catalyzed the hydrolysis of S(substituent)-L-cysteinyl-glycine adducts such as L-cystinyl-bis(glycine) and N-ethylmaleimide-S-L-cysteinyl-glycine, as well as the conversion of leukotriene D4 to E4. Furthermore it catalyzed a hydrolytic splitting of L-Leu-L-Leu, but not S-benzyl-L-cysteine p-nitroanilide, which is a good substrate for aminopeptidase. Our enzyme preparation was immunologically identical to the rat renal dehydropeptidase I. The physiological significance of the pulmonary dehydropeptidase I on the metabolism of glutathione and its adducts is discussed.  相似文献   
17.
Phosphoserine phosphatase (PSP) catalyzes the dephosphorylation of phosphoserine to serine and inorganic phosphate. PSPs, which have been found in all three domains of life, belong to the haloacid dehalogenase-like hydrolase superfamily. However, certain organisms, particularly bacteria, lack a classical PSP gene, although they appear to possess a functional phosphoserine synthetic pathway. The apparent lack of a PSP ortholog in Hydrogenobacter thermophilus, an obligately chemolithoautotrophic and thermophilic bacterium, represented a missing link in serine anabolism because our previous study suggested that serine should be synthesized from phosphoserine. Here, we detected PSP activity in cell-free extracts of H. thermophilus and purified two proteins with PSP activity. Surprisingly, these proteins belonged to the histidine phosphatase superfamily and had been annotated as cofactor-dependent phosphoglycerate mutase (dPGM). However, because they possessed neither mutase activity nor the residues important for the activity, we defined these proteins as novel-type PSPs. Considering the strict substrate specificity toward l-phosphoserine, kinetic parameters, and PSP activity levels in cell-free extracts, these proteins were strongly suggested to function as PSPs in vivo. We also detected PSP activity from "dPGM-like" proteins of Thermus thermophilus and Arabidopsis thaliana, suggesting that PSP activity catalyzed by dPGM-like proteins may be distributed among a broad range of organisms. In fact, a number of bacterial genera, including Firmicutes and Cyanobacteria, were proposed to be strong candidates for possessing this novel type of PSP. These findings will help to identify the missing link in serine anabolism.  相似文献   
18.
19.
Based on 2-(4-phenoxybenzoyl)-5-hydroxyindole (2), a novel structural class of CaMKII inhibitors were synthesized and further optimized. The strong acidity of the hydroxyl group and the lipophilic group at the 4 and 6-positions were found to be necessary for strong CaMKII inhibition. Compound 25 was identified as a promising compound with 50-fold more potent inhibitory activity for CaMKII than 2. Compound 25 also showed high selectivity for CaMKII over off-target kinases.  相似文献   
20.
A scale up of transformed root cultures of Atropa belladonna from a 300-ml flask to a 30-l tank was accomplished without any reduction in alkaloid productivity. Cutting treatment of seed cultures showed no distinct effect on root growth, morphology, and alkaloid content in conical flasks during 1 month of culture. Randomly cut roots thus grown were further cultivated in 3-l and 30-l modified stirred bioreactors for a scale-up culture. After 1 month of culture, 1490 mg of tropane alkaloids was produced by a 30-l culture of A. belladonna transformed roots. These roots contained the same level of atropine (5.4 mg/ g dw) as the roots of this plant grown in the field for 12 months and still contained a considerable amount of other alkaloids including 1.6 mg/g dw of 6-β-hydroxyhyoscyamine, 0.9 mg/g dw of scopolamine, and 2.0 mg/g dw of littorine. Received: 12 June 1998 / Revision received: 31 August 1998 / Accepted: 27 October 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号