首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   20篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   9篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   13篇
  2013年   19篇
  2012年   23篇
  2011年   14篇
  2010年   10篇
  2009年   14篇
  2008年   22篇
  2007年   15篇
  2006年   16篇
  2005年   20篇
  2004年   25篇
  2003年   19篇
  2002年   11篇
  2001年   3篇
  2000年   3篇
  1999年   8篇
  1998年   10篇
  1997年   12篇
  1996年   7篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   6篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1980年   3篇
  1977年   6篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1971年   1篇
  1970年   2篇
  1968年   3篇
  1967年   2篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
301.
P-solubilizing microorganisms are a promising alternative for a sustainable use of P against a backdrop of depletion of high-grade rock phosphates (RPs). Nevertheless, toxic elements present in RPs, such as fluorine, can negatively affect microbial solubilization. Thus, this study aimed at selecting Aspergillus niger mutants efficient at P solubilization in the presence of fluoride (F). The mutants were obtained by exposition of conidia to UV light followed by screening in a medium supplemented with Ca3(PO4)2 and F. The mutant FS1-555 showed the highest solubilization in the presence of F, releasing approximately 70% of the P contained in Ca3(PO4)2, a value 1.7 times higher than that obtained for the wild type (WT). The mutant FS1-331 showed improved ability of solubilizing fluorapatites, increasing the solubilization of Araxá, Catalão, and Patos RPs by 1.7, 1.6, and 2.5 times that of the WT, respectively. These mutants also grew better in the presence of F, indicating that mutagenesis allowed the acquisition of F tolerance. Higher production of oxalic acid by FS1-331 correlated with its improved capacity for RP solubilization. This mutant represents a significant improvement and possess a high potential for application in solubilization systems with fluoride-rich phosphate sources.  相似文献   
302.
Electrostimulation of the medial neurosecretory cells of day-1 adult female Locusta migratoria resulted in a significant enhancement of juvenile hormone biosynthesis by the corpora allata within 2–3 days of the operation, as determined by a radiochemical assay for juvenile hormone biosynthesis. This elevation in the rate of juvenile hormone biosynthesis was also reflected in basal oöcyte length, with the oöcytes of stimulated animals significantly larger than the sham-operated animals. Radio-frequency cautery of the cerebral axonal tracts of the medial neurosecretory cells prevented this enhancement in juvenile hormone biosynthesis and in basal oöcyte growth in both stimulated and sham-operated animals.Stimulation of the lateral neurosecretory cells resulted in a slight elevation in rates of juvenile hormone biosynthesis 2 days after the operation. However, after cautery of the medial cell tracts, a significant elevation in juvenile hormone biosynthesis was observed 1 and 2 days after stimulation. Basal oöcyte length in stimulated animals differed significantly from sham-operated animals only on day 6. Cautery of the medial cell tracts again attenuated oöcyte growth. Our results suggest that the medial neurosecretory cells are the source of an allatotropin that can be released by electrostimulation. This substance appears to operate directly on the corpus allatum, causing a change in the juvenile hormone biosynthetic machinery.  相似文献   
303.
TRPC6 are plasma membrane cation channels. By means of live-cell imaging and spectroscopic methods, we found that HEK cells expressing TRPC6 channels (HEK-TRPC6) are enriched in zinc and sulphur and have a reduced copper content when compared to HEK cells and HEK cells expressing TRPC3 channels (HEK-TRPC3). Hence, HEK-TRPC6 cells have larger pools of mobilizable Zn2+ and are more sensitive to an oxidative stress. Synchrotron X-ray fluorescence experiments showed a higher zinc content in the nuclear region indicating that the intracellular distribution of this metal was influenced by the over-expression of TRPC6 channels. Their properties were investigated with the diacylglycerol analogue SAG and the plant extract hyperforin. Electrophysiological recordings and imaging experiments with the fluorescent Zn2+ probe FluoZin-3 demonstrated that TRPC6 channels form Zn2+-conducting channels. In cortical neurons, hyperforin-sensitive channels co-exist with voltage-gated channels, AMPA and NMDA receptors, which are known to transport Zn2+. The ability of these channels to regulate the size of the mobilizable pools of Zn2+ was compared. The data collected indicate that the entry of Zn2+ through TRPC6 channels can up-regulate the size of the DTDP-sensitive pool of Zn2+. By showing that TRPC6 channels constitute a Zn2+ entry pathway, our study suggests that they could play a role in zinc homeostasis.  相似文献   
304.
We have previously demonstrated that CD34(+) cells isolated from fetal mouse muscles are an interesting source of myogenic progenitors. In the present work, we pinpoint the tissue location of these CD34(+) cells using cell surface and phenotype markers. In order to identify the myogenic population, we next purified different CD34(+) subsets, determined their expression of relevant lineage-related genes, and analyzed their differentiation capacities in vitro and in vivo. The CD34(+) population comprised a CD31(+)/CD45(-) cell subset exhibiting endothelial characteristics and only capable of forming microvessels in vivo. The CD34(+)/CD31(-)/CD45(-)/Sca1(+) subpopulation, which is restricted to the muscle epimysium, displayed adipogenic differentiation both in vitro and in vivo. CD34(+)/CD31(-)/CD45(-)/Sca1(-) cells, localized in the muscle interstitium, transcribed myogenic genes, but did not display the characteristics of adult satellite cells. These cells were distinct from pericytes and fibroblasts. They were myogenic in vitro, and efficiently contributed to skeletal muscle regeneration in vivo, although their myogenic potential was lower than that of the unfractionated CD34(+) cell population. Our results indicate that angiogenic and adipogenic cells grafted with myogenic cells enhance their contribution to myogenic regeneration, highlighting the fundamental role of the microenvironment on the fate of transplanted cells.  相似文献   
305.
Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative and infectious trypomastigotes (metacyclogenesis). No peaks of ubiquitin-mediated degradation were observed and the profile of ubiquitinated conjugates was similar at all stages of differentiation. However, an analysis of carbonylated proteins showed significant variation in oxidized protein levels at the various stages of differentiation and the proteasome inhibition also increased oxidized protein levels. Our data suggest that different proteasome complexes coexist during metacyclogenesis. The 20S proteasome may be free or linked to regulatory particles (PA700, PA26 and PA200), at specific cell sites and the coordinated action of these complexes would make it possible for proteolysis of ubiquitin-tagged proteins and oxidized proteins, to coexist in the cell.  相似文献   
306.
307.
308.
Poly(ADP-ribose) polymerase (PARP) has been suggested to play a regulatory role in vivo, in DNA replication and/or DNA repair based mainly on its capacity to bind to DNA strand breaks. This interaction is modulated through auto poly(ADP-ribosylation). However, the biological function of PARP may also involve interactions with proteins such as topoisomerase I or DNA polymerase , which may or may not be themselves ADP-ribosylated. Using the yeast two-hybrid method search for other proteins interacting with PARP, we have isolated a full-length cDNA clone coding for a protein of 158 amino acid residues. This amino acid sequence is 66 and 56% identical to yeast ubiquitin-conjugating enzymes Hus5 and Ubc9 of Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Moreover, we have demonstrated that the expressed protein complements a S. cerevisiae yeast strain deficient for Ubc9. The protein encoded by the isolated cDNA is thus a new human counterpart of the ubiquitin-conjugating enzyme family and has been called hUbc9. The hubc9 gene locus has been assigned to the chromosomal location 16p13.2-p13.3. By means of two-hybrid analysis it was discovered that hUbc9 interacts with the automodification domain of PARP. This interaction was further confirmed using GST (glutathione-S-transferase) tagged fusion proteins: (i) in vivo, by transfecting cos7 cells with hUbc9 cloned in an eukaryotic expression vector, and (ii) in vitro, by mixing purified PARP with hUbc9 purified and expressed in bacteria. The possible significance and function of this interaction is discussed while taking into account the possible intracellular role of hUbc9.  相似文献   
309.
310.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号